194 research outputs found

    Tissue eosinophilia: a morphologic marker for assessing stromal invasion in laryngeal squamous neoplasms

    Get PDF
    BACKGROUND: The assessment of tumor invasion of underlying benign stroma in neoplastic squamous proliferation of the larynx may pose a diagnostic challenge, particularly in small biopsy specimens that are frequently tangentially sectioned. We studied whether thresholds of an eosinophilic response to laryngeal squamous neoplasms provides an adjunctive histologic criterion for determining the presence of invasion. METHODS: Eighty-seven(n = 87) cases of invasive squamous cell carcinoma and preinvasive squamous neoplasia were evaluated. In each case, the number of eosinophils per high power field(eosinophils/hpf), and per 10 hpf in the tissue adjacent to the neoplastic epithelium, were counted and tabulated. For statistical purposes, the elevated eosinophils were defined and categorized as: focally and moderately elevated (5–9 eos/hpf), focally and markedly increased(>10/hpf), diffusely and moderately elevated(5–19 eos/10hpf), and diffusely and markedly increased (>20/10hpf). RESULTS: In the invasive carcinoma, eosinophil counts were elevated focally and /or diffusely, more frequently seen than in non-invasive neoplastic lesions. The increased eosinophil counts, specifically >10hpf, and >20/10hpf, were all statistically significantly associated with stromal invasion. Greater than 10 eosinophils/hpf and/or >20 eosinophils/10hpf had highest predictive power, with a sensitivity, specificity and positive predictive value of 82%, 93%, 96% and 80%, 100% and 100%, respectively. Virtually, greater than 20 eosinophils/10 hpf was diagnostic for tumor invasion in our series. CONCLUSION: Our study suggests for the first time that the elevated eosinophil count in squamous neoplasia of the larynx is a morphologic feature associated with tumor invasion. When the number of infiltrating eosinophils exceeds 10/hpf and or >20/10 hpf in a laryngeal biopsy with squamous neoplasia, it represents an indicator for the possibility of tumor invasion. Similarly, the presence of eosinophils meeting these thresholds in an excisional specimen should prompt a thorough evaluation for invasiveness, when evidence of invasion is absent, or when invasion is suspected by conventional criteria in the initial sections

    High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

    Get PDF
    (abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope, a detector with a large field of view made of small movable CCDs located around a fixed central CCD, and an interferometric calibration system originating from metrology fibers located at the primary mirror. The proposed mission architecture relies on the use of two satellites operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations (alternative option uses deployable boom). The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits. The remaining time might be allocated to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member list of the NEAT proposal and the news about the project are available at http://neat.obs.ujf-grenoble.fr. The final publication is available at http://www.springerlink.co

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    Activated iNKT Cells Promote Memory CD8+ T Cell Differentiation during Viral Infection

    Get PDF
    α-galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8+ T cells, as a consequence of reduced inflammation

    Salivary Gland NK Cells Are Phenotypically and Functionally Unique

    Get PDF
    Natural killer (NK) cells and CD8+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or Treg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells

    NK Cell–Like Behavior of Vα14i NK T Cells during MCMV Infection

    Get PDF
    Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Vα14 invariant natural killer T cell response to MCMV has not been examined. We found that Vα14i NK T cells become activated and produce significant levels of IFN-γ, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Vα14i NK T cells into MCMV-infected CD1d−/− mice demonstrate that CD1d is dispensable for Vα14i NK T cell activation. In contrast, both IFN-α/β and IL-12 are required for optimal activation. Vα14i NK T cell–derived IFN-γ is partially dependent on IFN-α/β but highly dependent on IL-12. Vα14i NK T cells contribute to the immune response to MCMV and amplify NK cell–derived IFN-γ. Importantly, mortality is increased in CD1d−/− mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Vα14i NK T cells that act as effector T cells during bacterial infection, but have NK cell–like behavior during the innate immune response to MCMV infection

    Finding the sources of missing heritability in a yeast cross

    Get PDF
    For many traits, including susceptibility to common diseases in humans, causal loci uncovered by genetic mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this "missing heritability" have been proposed. Here we use a large cross between two yeast strains to accurately estimate different sources of heritable variation for 46 quantitative traits and to detect underlying loci with high statistical power. We find that the detected loci explain nearly the entire additive contribution to heritable variation for the traits studied. We also show that the contribution to heritability of gene-gene interactions varies among traits, from near zero to 50%. Detected two-locus interactions explain only a minority of this contribution. These results substantially advance our understanding of the missing heritability problem and have important implications for future studies of complex and quantitative traits

    Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    Get PDF
    Background: Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results: The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion: We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages.Vidushi S. Patel, Steven J.B. Cooper, Janine E. Deakin, Bob Fulton, Tina Graves, Wesley C. Warren, Richard K. Wilson and Jennifer A.M. Grave
    corecore