364 research outputs found

    The Dark Side of the Electroweak Phase Transition

    Get PDF
    Recent data from cosmic ray experiments may be explained by a new GeV scale of physics. In addition the fine-tuning of supersymmetric models may be alleviated by new O(GeV) states into which the Higgs boson could decay. The presence of these new, light states can affect early universe cosmology. We explore the consequences of a light (~ GeV) scalar on the electroweak phase transition. We find that trilinear interactions between the light state and the Higgs can allow a first order electroweak phase transition and a Higgs mass consistent with experimental bounds, which may allow electroweak baryogenesis to explain the cosmological baryon asymmetry. We show, within the context of a specific supersymmetric model, how the physics responsible for the first order phase transition may also be responsible for the recent cosmic ray excesses of PAMELA, FERMI etc. We consider the production of gravity waves from this transition and the possible detectability at LISA and BBO

    The Cosmology of Composite Inelastic Dark Matter

    Get PDF
    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte

    Decaying into the Hidden Sector

    Full text link
    The existence of light hidden sectors is an exciting possibility that may be tested in the near future. If DM is allowed to decay into such a hidden sector through GUT suppressed operators, it can accommodate the recent cosmic ray observations without over-producing antiprotons or interfering with the attractive features of the thermal WIMP. Models of this kind are simple to construct, generic and evade all astrophysical bounds. We provide tools for constructing such models and present several distinct examples. The light hidden spectrum and DM couplings can be probed in the near future, by measuring astrophysical photon and neutrino fluxes. These indirect signatures are complimentary to the direct production signals, such as lepton jets, predicted by these models.Comment: 40 pages, 5 figure

    Signatures of large composite Dark Matter states

    Get PDF
    We investigate the interactions of large composite dark matter (DM) states with the Standard Model (SM) sector. Elastic scattering with SM nuclei can be coherently enhanced by factors as large as A^2, where A is the number of constituents in the composite state (there exist models in which DM states of very large A > 10^8 may be realised). This enhancement, for a given direct detection event rate, weakens the expected signals at colliders by up to 1/A. Moreover, the spatially extended nature of the DM states leads to an additional, characteristic, form factor modifying the momentum dependence of scattering processes, altering the recoil energy spectra in direct detection experiments. In particular, energy recoil spectra with peaks and troughs are possible, and such features could be confirmed with only O(50) events, independently of the assumed halo velocity distribution. Large composite states also generically give rise to low-energy collective excitations potentially relevant to direct detection and indirect detection phenomenology. We compute the form factor for a generic class of such excitations - quantised surface modes - finding that they can lead to coherently-enhanced, but generally sub-dominant, inelastic scattering in direct detection experiments. Finally, we study the modifications to capture rates in astrophysical objects that follow from the elastic form factor, as well as the effects of inelastic interactions between DM states once captured. We argue that inelastic interactions may lead to the DM collapsing to a dense configuration at the centre of the object.Comment: 30 pages, 5 figures, v2; references and minor additional comments adde

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
    • 

    corecore