260 research outputs found

    DIY Science Sims

    Full text link

    Metal bioaccessibility in synthetic bodyfluids–A way to considerpositive and negative alloying effects in hazard assessments

    Get PDF
    Hazard classification of metal alloys is today generally based on their bulk content, an approach that seldom reflects the extent of metal release for a given environment. Such information can instead be achieved via bioelution testing under simulated physiological conditions. The use of bioelution data instead of bulk contents would hence refine the current hazard classification of alloys and enable grouping. Bioelution data have been generated for nickel (Ni) and cobalt (Co) released from several stainless steel grades, one low-alloyed steel, and Ni and Co metals in synthetic sweat, saliva and gastric fluid, for exposure periods from 2 to 168 h. All stainless steel grades with bulk contents of 0.11–10 wt% Ni and 0.019–0.24 wt% Co released lower amounts of Ni (up to 400-fold) and Co (up to 300-fold) than did the low-alloyed steel (bulk content: 0.034% Ni, 0.015% Co). They further showed a relative bioaccessibility of Ni and Co considerably less than 1, while the opposite was the case for the low-alloyed steel. Surface oxide- and electrochemical corrosion investigations explained these findings in terms of the high passivity of the stainless steels related to the Cr(III)-rich surface oxide that readily adapted to the fluid acidity and chemistry

    Confronting an augmented reality

    Get PDF
    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself? In this article, we seek to initiate a discussion that focuses on these questions, and suggest that they be used as drivers for research into effective educational applications of augmented reality. We discuss how multi-modal, sensorial augmentation of reality links to existing theories of education and learning, focusing on ideas of cognitive dissonance and the confrontation of new realities implied by exposure to new and varied perspectives. We also discuss connections with broader debates brought on by the social and cultural changes wrought by the increased digitalisation of our lives, especially the concept of the extended mind. Rather than offer a prescription for augmentation, our intention is to throw open debate and to provoke deep thinking about what interacting with and creating an augmented reality might mean for both teacher and learner

    Corrosion failure of titanium tubes of a heat exchanger for the heating of dissolving lye

    Get PDF
    Corrosion of titanium heat exchangers in the processing of sylvinite ore is undesirable from economic, safety, and process sustainability perspectives. Triggered by an industrial case, we investigated the extent of corrosion during simulated contact with sylvinite ore (in dissolving lye) in relevant conditions. Detailed characterization of the failed tubes and corrosion products was carried out to understand the mechanism of failure. Corrosion of titanium (Grade 2) tubes was investigated at room temperature, 60, 70, 80, and 90 °C. After electrochemical and surface morphology analysis, we found that pitting corrosion of the titanium tube material sharply increased above 80 °C in the simulated sylvinite ore environment (pH 7.1). The failure analysis revealed extensive degradation by transgranular cracking through both the oxide and metal matrix, likely caused by a combination of the high temperature, pressure, possible vibrations, the build-up of lye deposits causing crevices, the high salt content of the lye, and possibly metal (copper, iron, zinc) impurities/deposits in or on the titanium metal, which can catalyze hydrogen evolution

    Effect of Amino Acids on the Corrosion and Metal Release from Copper and Stainless Steel

    Get PDF
    Copper (Cu) and stainless steel 316 L are widely used for biomedical applications, such as intrauterine devices and orthopedic/dental implants. Amino acids are abundantly present in biological environments. We investigated the influence of select amino acids on the corrosion of Cu under naturally aerated and deaerated conditions using a phosphate-free buffer. Amino acids increased the corrosion of Cu under both aeration conditions at pH 7.4. Cu release was also significantly (up to 18-fold) increased in the presence of amino acids, investigated at pH 7.4 and 37 °C for 24 h under naturally aerated conditions. Speciation modelling predicted a generally increased solubility of Cu in the presence of amino acids at pH 7.4. 316 L, investigated for metal release under similar conditions for comparison, released about 1,000-fold lower amounts of metals than did Cu and remained passive with no change in surface oxide composition or thickness. However, amino acids also increased the chromium release (up to 52-fold), significantly for lysine, and the iron release for cysteine, while nickel and molybdenum release remained unaffected. This was not predicted by solution speciation modelling. The surface analysis confirmed the adsorption of amino acids on 316 L and, to a lower extent, Cu coupons

    A review of clinical decision-making: Models and current research

    Get PDF
    Aims and objectives: The aim of this paper was to review the current literature with respect to clinical decision-making models and the educational application of models to clinical practice. This was achieved by exploring the function and related research of the three available models of clinical decision making: information processing model, the intuitive-humanist model and the clinical decision making model. Background: Clinical decision-making is a unique process that involves the interplay between knowledge of pre-existing pathological conditions, explicit patient information, nursing care and experiential learning. Historically, two models of clinical decision making are recognised from the literature; the information processing model and the intuitive-humanist model. The usefulness and application of both models has been examined in relation the provision of nursing care and care related outcomes. More recently a third model of clinical decision making has been proposed. This new multidimensional model contains elements of the information processing model but also examines patient specific elements that are necessary for cue and pattern recognition. Design: Literature review Methods: Evaluation of the literature generated from MEDLINE, CINAHL, OVID, PUBMED and EBESCO systems and the Internet from 1980 – November 2005

    Study on the Self-Repairing Effect of Nanoclay in Powder Coatings for Corrosion Protection

    Get PDF
    Powder coatings are a promising, solvent-free alternative to traditional liquid coatings due to the superior corrosion protection they provide. This study investigates the effects of incorporating montmorillonite-based nanoclay additives with different particle sizes into polyester/triglycidyl isocyanurate (polyester/TGIC) powder coatings. The objective is to enhance the corrosion-protective function of the coatings while addressing the limitations of commonly employed epoxy-based coating systems that exhibit inferior UV resistance. The anti-corrosive and surface qualities of the coatings were evaluated via neutral salt spray tests, electrochemical measurements, and surface analytical techniques. Results show that the nanoclay with a larger particle size of 18.38 µm (D50, V) exhibits a better barrier effect at a lower dosage of 4%, while a high dosage leads to severe defects in the coating film. Interestingly, the coating capacitance is found, via electrochemical impedance spectroscopy, to decrease during the immersion test, indicating a self-repairing capability of the nanoclay, arising from its swelling and expansion. Neutral salt spray tests suggest an optimal nanoclay dosage of 2%, with the smaller particle size (8.64 µm, D50, V) nanoclay providing protection for 1.5 times as many salt spray hours as the nanoclay with a larger particle size. Overall, incorporating montmorillonite-based nanoclay additives is suggested to be a cost-effective approach for significantly enhancing the anti-corrosive function of powder coatings, expanding their application to outdoor environments

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    LEPTO 6.5 - A Monte Carlo Generator for Deep Inelastic Lepton-Nucleon Scattering

    Get PDF
    Physics and programming aspects are discussed for a Fortran 77 Monte Carlo program to simulate complete events in deep inelastic lepton-nucleon scattering. The parton level interaction is based on the standard model electroweak cross sections, which are fully implemented in leading order for any lepton of arbitrary polarization, and different parametrizations of parton density functions can be used. First order QCD matrix elements for gluon radiation and boson-gluon fusion are implemented and higher order QCD radiation is treated using parton showers. Hadronization is performed using the Lund string model, implemented in {\sc Jetset}/{\sc Pythia}. Rapidity gap events are generated through a model based on soft colour interactions.Comment: 30 pages LaTe
    corecore