789 research outputs found
Energy dependence of mean multiplicities in gluon and quark jets at the next-to-next-to-next-to-leading order
Analytic predictions for the energy dependence of the mean multiplicities in
gluon and quark jets are presented at the next-to-next-to-next-to-leading order
(3NLO) of perturbative QCD and are compared to experiment. The 3NLO correction
to the gluon jet multiplicity is found to be small. The corresponding
theoretical expression provides a good description of available gluon jet
measurements. In contrast, the 3NLO correction to the quark jet multiplicity is
large and the theoretical expression does not describe the data accurately. It
is shown that the well known success of the next-to-leading order (NLO)
approximation in describing the energy evolution of quark jet multiplicity can
be attributed to the equivalence of the quark and gluon expressions at NLO to
within a constant factor, and to almost constant contributions from higher
order terms to the gluon jet result
Granular packings with moving side walls
The effects of movement of the side walls of a confined granular packing are
studied by discrete element, molecular dynamics simulations. The dynamical
evolution of the stress is studied as a function of wall movement both in the
direction of gravity as well as opposite to it. For all wall velocities
explored, the stress in the final state of the system after wall movement is
fundamentally different from the original state obtained by pouring particles
into the container and letting them settle under the influence of gravity. The
original packing possesses a hydrostatic-like region at the top of the
container which crosses over to a depth-independent stress. As the walls are
moved in the direction opposite to gravity, the saturation stress first reaches
a minimum value independent of the wall velocity, then increases to a
steady-state value dependent on the wall-velocity. After wall movement ceases
and the packing reaches equilibrium, the stress profile fits the classic
Janssen form for high wall velocities, while it has some deviations for low
wall velocities. The wall movement greatly increases the number of
particle-wall and particle-particle forces at the Coulomb criterion. Varying
the wall velocity has only small effects on the particle structure of the final
packing so long as the walls travel a similar distance.Comment: 11 pages, 10 figures, some figures in colo
Bio-inspired vision mimetics towards next generation collision avoidance automation
The current “deep learning + large-scale data + strong supervised labeling” technology framework of collision avoidance for ground robots and aerial drones is becoming saturated. Its development gradually faces challenges from real open-scene applications, including small data, weak annotation, and cross-scene. Inspired by the neural structure and processes underlying human cognition (e.g., human visual, auditory, and tactile systems) and the knowledge learned from daily driving tasks, such as, a high-level cognitive system is developed for integrating collision sensing and collision avoidance. This bio-inspired cognitive approach takes the advantages of good robustness, high self-adaptability, and low computation consumption in practical driving scenes
Hadron Multiplicities
We review results on hadron multiplicities in high energy particle
collisions. Both theory and experiment are discussed. The general procedures
used to describe particle multiplicity in Quantum Chromodynamics (QCD) are
summarized. The QCD equations for the generating functions of the multiplicity
distributions are presented both for fixed and running coupling strengths. The
mean multiplicities of gluon and quark jets, their ratio, higher moments, and
the slopes of multiplicities as a function of energy scale, are among the main
global features of multiplicity for which QCD results exist. Recent data from
high energy e+e- experiments, including results for separated quark and gluon
jets, allow rather direct tests of these results. The theoretical predictions
are generally quite successful when confronted with data. Jet and subjet
multiplicities are described. Multiplicity in limited regions of phase space is
discussed in the context of intermittency and fractality. The problem of
singularities in the generating functions is formulated. Some special features
of average multiplicities in heavy quark jets are described.Comment: 140 pages, 33 figures, version for Physics Report
Kinetic Turbulence
The weak collisionality typical of turbulence in many diffuse astrophysical
plasmas invalidates an MHD description of the turbulent dynamics, motivating
the development of a more comprehensive theory of kinetic turbulence. In
particular, a kinetic approach is essential for the investigation of the
physical mechanisms responsible for the dissipation of astrophysical turbulence
and the resulting heating of the plasma. This chapter reviews the limitations
of MHD turbulence theory and explains how kinetic considerations may be
incorporated to obtain a kinetic theory for astrophysical plasma turbulence.
Key questions about the nature of kinetic turbulence that drive current
research efforts are identified. A comprehensive model of the kinetic turbulent
cascade is presented, with a detailed discussion of each component of the model
and a review of supporting and conflicting theoretical, numerical, and
observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al.
(eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science
Library 407, Springer-Verlag Berlin Heidelberg (2015
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Solar Wind Turbulence and the Role of Ion Instabilities
International audienc
The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory
The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by
four institutions in Spain that flew on board the Sunrise balloon-borne
telesocope in June 2009 for almost six days over the Arctic Circle. As a
polarimeter IMaX uses fast polarization modulation (based on the use of two
liquid crystal retarders), real-time image accumulation, and dual beam
polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the
instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to
achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive
line of Fe I at 5250.2 AA and observes all four Stokes parameters at various
points inside the spectral line. This allows vector magnetograms, Dopplergrams,
and intensity frames to be produced that, after reconstruction, reach spatial
resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time
cadences vary between ten and 33 seconds, although the shortest one only
includes longitudinal polarimetry. The spectral line is sampled in various ways
depending on the applied observing mode, from just two points inside the line
to 11 of them. All observing modes include one extra wavelength point in the
nearby continuum. Gauss equivalent sensitivities are four Gauss for
longitudinal fields and 80 Gauss for transverse fields per wavelength sample.
The LOS velocities are estimated with statistical errors of the order of 5-40
m/s. The design, calibration and integration phases of the instrument, together
with the implemented data reduction scheme are described in some detail.Comment: 17 figure
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
- …