The effects of movement of the side walls of a confined granular packing are
studied by discrete element, molecular dynamics simulations. The dynamical
evolution of the stress is studied as a function of wall movement both in the
direction of gravity as well as opposite to it. For all wall velocities
explored, the stress in the final state of the system after wall movement is
fundamentally different from the original state obtained by pouring particles
into the container and letting them settle under the influence of gravity. The
original packing possesses a hydrostatic-like region at the top of the
container which crosses over to a depth-independent stress. As the walls are
moved in the direction opposite to gravity, the saturation stress first reaches
a minimum value independent of the wall velocity, then increases to a
steady-state value dependent on the wall-velocity. After wall movement ceases
and the packing reaches equilibrium, the stress profile fits the classic
Janssen form for high wall velocities, while it has some deviations for low
wall velocities. The wall movement greatly increases the number of
particle-wall and particle-particle forces at the Coulomb criterion. Varying
the wall velocity has only small effects on the particle structure of the final
packing so long as the walls travel a similar distance.Comment: 11 pages, 10 figures, some figures in colo