91 research outputs found
Magnetoresistance Effect in Spin-Polarized Junctions of Ferromagnetically Contacting Multiple Conductive Paths: Applications to Atomic Wires and Carbon Nanotubes
For spin-polarized junctions of ferromagnetically contacting multiple
conductive paths, such as ferromagnet (FM)/atomic wires/FM and FM/carbon
nanotubes/FM junctions, we theoretically investigate spin-dependent transport
to elucidate the intrinsic relation between the number of paths and conduction,
and to enhance the magnetoresistance (MR) ratio. When many paths are randomly
located between the two FMs, electronic wave interference between the FMs
appears, and then the MR ratio increases with increasing number of paths.
Furthermore, at each number of paths, the MR ratio for carbon nanotubes becomes
larger than that for atomic wires, reflecting the characteristic shape of
points in contact with the FM.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.
Vacuum structure of Toroidal Carbon Nanotubes
Low energy excitations in carbon nanotubes can be described by an effective
field theory of two components spinor. It is pointed out that the chiral
anomaly in 1+1 dimensions should be observed in a metallic toroidal carbon
nanotube on a planar geometry with varying magnetic field. We propose an
experimental setup for studying this quantum effect. We also analyze the vacuum
structure of the metallic toroidal carbon nanotube including the Coulomb
interactions and discuss some effects of external charges on the vacuum.Comment: 10 pages, 11 figure
1D Frustrated Ferromagnetic Model with Added Dzyaloshinskii-Moriya Interaction
The one-dimensional (1D) isotropic frustrated ferromagnetic spin-1/2 model is
considered. Classical and quantum effects of adding a Dzyaloshinskii-Moriya
(DM) interaction on the ground state of the system is studied using the
analytical cluster method and numerical Lanczos technique. Cluster method
results, show that the classical ground state magnetic phase diagram consists
of only one single phase: "chiral". The quantum corrections are determined by
means of the Lanczos method and a rich quantum phase diagram including the
gapless Luttinger liquid, the gapped chiral and dimer orders is obtained.
Moreover, next nearest neighbors will be entangled by increasing DM interaction
and for open chains, end-spins are entangled which shows the long distance
entanglement (LDE) feature that can be controlled by DM interaction.Comment: 8 pages, 9 figure
Liposomes in Biology and Medicine
Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS
Observation of a first candidate in the OPERA experiment in the CNGS beam
The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS)
has been designed to perform the first detection of neutrino oscillations in
direct appearance mode through the study of the
channel. The hybrid apparatus consists of an emulsion/lead target complemented
by electronic detectors and it is placed in the high energy long-baseline CERN
to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS
neutrinos were successfully carried out in 2008 and 2009. After a brief
description of the beam, the experimental setup and the procedures used for the
analysis of the neutrino events, we describe the topology and kinematics of a
first candidate charged-current event satisfying the kinematical
selection criteria. The background calculations and their cross-check are
explained in detail and the significance of the event is assessed.Comment: 19 pages, 3 figure
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
- …