263 research outputs found

    Inferring what a user is not interested in

    Full text link

    Coherent QCD phenomena in the Coherent Pion-Nucleon and Pion-Nucleus Production of Two Jets at High Relative Momenta

    Full text link
    We use QCD to compute the cross section for coherent production of a di-jet (treated as a qqˉq\bar q moving at high relative transverse momentum,κt\kappa_t ). In the target rest frame,the space-time evolution of this reaction is dominated by the process in which the high κt\kappa_t qqˉq\bar q component of the pion wave function is formed before reaching the target. It then interacts through two gluon exchange. In the approximation of keeping the leading order in powers of αs\alpha_s and all orders in αsln(κt2/k02),\alpha_{s}\ln(\kappa_{t}^2/k_{0}^2), the amplitudes for other processes are shown to be smaller at least by a power of αs\alpha_{s}. The resulting dominant amplitude is proportional to z(1z)κt4z(1-z) \kappa_t^{-4} (zz is the fraction light-cone(+)momentum carried by the quark in the final state) times the skewed gluon distribution of the target. For the pion scattering by a nuclear target, this means that at fixed xN=2κt2/sx_{N}= 2\kappa_{t}^2/s (but κt2\kappa_{t}^2\to \infty) the nuclear process in which there is only a single interaction is the most important one to contribute to the reaction. Thus in this limit color transparency phenomena should occur.These findings are in accord with E971 experiment at FNAL. We also re-examine a potentially important nuclear multiple scattering correction which is positive and A1/3/κt4\propto A^{1/3}/\kappa_t^4. The meaning of the signal obtained from the experimental measurement of pion diffraction into two jets is also critically examined and significant corrections are identified.We show also that for values of κt\kappa_t achieved at fixed target energies, di-jet production by the e.m. field of the nucleus leads to an insignificant correction which gets more important as κt\kappa_t increases.Comment: 23 pages, 9 figure

    Serum Neu5Gc biomarkers are elevated in primary cutaneous melanoma

    Get PDF
    Cutaneous melanoma is one of the most aggressive and deadly types of skin cancer and rates of disease are continuing to increase worldwide. Currently, no serum biomarkers exist for the early detection of cutaneous melanoma. Normal human cells cannot make the sialic acid sugar, Neu5Gc, yet human tumor cells express Neu5Gc and Neu5Gc-containing glycoconjugates have been proposed as tumor biomarkers. We engineered a Neu5Gc-specific lectin based on the pentameric B-subunit of the Shiga toxigenic Escherichia coli subtilase cytotoxin, termed SubB2M. We have detected elevated Neu5Gc-containing biomarkers in the sera of ovarian and breast cancer patients in a highly sensitive surface plasmon resonance (SPR)-based assay using our SubB2M lectin. Here, we used the SubB2M-SPR assay to investigate Neu5Gc-containing glycoconjugates in the serum of cutaneous melanoma patients. We found elevated total serum Neu5Gc levels in primary (n ¼ 24) and metastatic (n ¼ 38) patients compared to cancer-free controls (n ¼ 34). Serum Neu5Gc levels detected with SubB2M can distinguish cutaneous melanoma patients from cancer-free controls with high sensitivity and specificity as determined by ROC curve analysis. These data indicate that serum Neu5Gc-containing glycoconjugates are a novel class of biomarkers for cutaneous melanoma, particularly for primary melanoma, and have the potential to contribute to the early diagnosis of this disease.Lucy K. Shewell, Christopher J. Day, Tiana Hippolite, Xavier De Bisscop, James C. Paton, Adrienne W. Paton, Michael P. Jenning

    A pervasive approach to a real-time intelligent decision support system in intensive medicine

    Get PDF
    The decision on the most appropriate procedure to provide to the patients the best healthcare possible is a critical and complex task in Intensive Care Units (ICU). Clinical Decision Support Systems (CDSS) should deal with huge amounts of data and online monitoring, analyzing numerous parameters and providing outputs in a short real-time. Although the advances attained in this area of knowledge new challenges should be taken into account in future CDSS developments, principally in ICUs environments. The next generation of CDSS will be pervasive and ubiquitous providing the doctors with the appropriate services and information in order to support decisions regardless the time or the local where they are. Consequently new requirements arise namely the privacy of data and the security in data access. This paper will present a pervasive perspective of the decision making process in the context of INTCare system, an intelligent decision support system for intensive medicine. Three scenarios are explored using data mining models continuously assessed and optimized. Some preliminary results are depicted and discussed.Fundação para a Ciência e a Tecnologia (FCT

    Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei

    Full text link
    So far no theoretical tool for the comprehensive description of exclusive electroproduction of vector mesons off nuclei at medium energies has been developed. We suggest a light-cone QCD formalism which is valid at any energy and incorporates formation effects (color transparency), the coherence length and the gluon shadowing. At medium energies color transparency (CT) and the onset of coherence length (CL) effects are not easily separated. Indeed, although nuclear transparency measured by the HERMES experiment rises with Q^2, it agrees with predictions of the vector dominance model (VDM) without any CT effects. Our new results and observations are: (i) the good agreement with the VDM found earlier is accidental and related to the specific correlation between Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have been estimated earlier within the two channel approximation. They are even stronger at low than at high energies and can be easily identified by HERMES or at JLab; (iii) gluon shadowing which is important at high energies is calculated and included; (iv) our parameter-free calculations explain well available data for variation of nuclear transparency with virtuality and energy of the photon; (v) predictions for electroproduction of \rho and \phi are provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure

    A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system

    Get PDF
    We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival Canada–France–Hawaii Telescope/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/Deep Imaging Multi-Object Spectrograph, Gemini/Gemini Multi-Object Spectrograph and Multiple Mirror Telescope/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous data sets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649

    The matter power spectrum in redshift space using effective field theory

    Get PDF
    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k <= 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time for the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of the baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k <~ 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the ell=0 mode up to ~ 5% and for the ell = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the ell = 0 mode gives a firm upper limit of k ~ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the ell = 0 mode, but can induce deviations as large as 2% for the ell = 2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms

    Pneumococcal Phasevarions Control Multiple Virulence Traits, Including Vaccine Candidate Expression

    Get PDF
    Published online 10 May 2022Streptococcus pneumoniae is the most common cause of bacterial illness worldwide. Current vaccines based on the polysaccharide capsule are only effective against a limited number of the .100 capsular serotypes. A universal vaccine based on conserved protein antigens requires a thorough understanding of gene expression in S. pneumoniae. All S. pneumoniae strains encode the SpnIII Restriction-Modification system. This system contains a phase-variable methyltransferase that switches specificity, and controls expression of multiple genes—a phasevarion. We examined the role of this phasevarion during pneumococcal pathobiology, and determined if phase variation resulted in differences in expression of currently investigated conserved protein antigens. Using locked strains that express a single methyltransferase specificity, we found differences in clinically relevant traits, including survival in blood, and adherence to and invasion of human cells. We also observed differences in expression of numerous proteinaceous vaccine candidates, which complicates selection of antigens for inclusion in a universal protein-based pneumococcal vaccine. This study will inform vaccine design against S. pneumoniae by ensuring only stably expressed candidates are included in a rationally designed vaccine.Zachary N. Phillips, Claudia Trappetti, Annelies Van Den Bergh, Gael Martin, Ainslie Calcutt, Victoria Ozberk, Patrice Guillon, Manisha Pandey, Mark von Itzstein, W. Edward Swords, James C. Paton, Michael P. Jennings, John M. Atac

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    3D MHD Simulations of Laboratory Plasma Jets

    Get PDF
    Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, knotty jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.Comment: 15 pages, 4 figures, accepted by Astrophysics and Space Science for Special Issue High Energy Density Laboratory Astrophysics Conferenc
    corecore