535 research outputs found

    Active learning of group-structured environments

    Get PDF
    The question investigated in this paper is to what extent an input representation influences the success of learning, in particular from the point of view of analyzing agents that can interact with their environment. We investigate learning environments that have a group structure. We introduce a learning model in different variants and study under which circumstances group structures can be learned efficiently from experimenting with group generators (actions). Negative results are presented, even without efficiency constraints, for rather general classes of groups showing that even with group structure, learning an environment from partial information is far from trivial. However, positive results for special subclasses of Abelian groups turn out to be a good starting point for the design of efficient learning algorithms based on structured representations

    The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs

    Get PDF
    IndexaciĂłn: Scopus.J.M. acknowledges support from CONICYT-Chile through CONICYT-PCHA/Doctorado-Nacional/2014-21140892. J.M., F.F., G.C.V., and G.M. acknowledge support from the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS). F.F. acknowledges support from Conicyt through the Fondecyt Initiation into Research project No. 11130228. J.M., F.F., J.S.M., G.C.V., and S.G. acknowledge support from Basal Project PFB-03, Centro de Modelamiento MatemĂĄico (CMM), Universidad de Chile. P.L. acknowledges support by Fondecyt through project #1161184. G.C.V. gratefully acknowledges financial support from CON-ICYT-Chile through FONDECYT postdoctoral grant number 3160747 and CONICYT-Chile and NSF through the Programme of International Cooperation project DPI201400090. P.H. acknowledges support from FONDECYT through grant 1170305. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. G.M. acknowledges support from Conicyt through CONICYT-PCHA/MagĂ­s-terNacional/2016-22162353. Support for T.d.J. has been provided by US NSF grant AST-1211916, the TABASGO Foundation, and Gary and Cynthia Bengier. R.R.M. acknowledges partial support from BASAL Project PFB-06, as well as FONDECYT project N◩1170364. Powered@NLHPC: this research was supported by the High Performance Computing infrastructure of the National Laboratory for High Performance Computing (NLHPC), PIA ECM-02, CONICYT. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaborating institutions: Argonne National Lab, the University of California Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologi-cas-Madrid, the University of Chicago, University College London, the DES-Brazil consortium, the University of Edinburgh, ETH-Zurich, the University of Illinois at Urbana-Champaign, Institut de Ciencies de l’Espai, Institut de Fisica d’Altes Energies, Lawrence Berkeley National Lab, Ludwig-Maximilians Universitat, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Lab, Stanford University, the University of Sussex, and Texas A&M University. Funding for DES, including DECam, has been provided by the U.S. Department of Energy, National Science Foundation, Ministry of Education and Science (Spain), Science and Technology Facilities Council (UK), Higher Education Funding Council (England), National Center for Supercomputing Applications, Kavli Institute for Cosmological Physics, Financia-dora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa, Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico and the MinistĂ©rio da CiĂȘncia e Tecnologia (Brazil), the German Research Foundation-sponsored cluster of excellence “Origin and Structure of the universe,” and the DES collaborating institutions. Facility: CTIO:1.5 m (DECam).The High Cadence Transient Survey (HiTS) aims to discover and study transient objects with characteristic timescales between hours and days, such as pulsating, eclipsing, and exploding stars. This survey represents a unique laboratory to explore large etendue observations from cadences of about 0.1 days and test new computational tools for the analysis of large data. This work follows a fully data science approach, from the raw data to the analysis and classification of variable sources. We compile a catalog of ∌15 million object detections and a catalog of ∌2.5 million light curves classified by variability. The typical depth of the survey is 24.2, 24.3, 24.1, and 23.8 in the u, g, r, and i bands, respectively. We classified all point-like nonmoving sources by first extracting features from their light curves and then applying a random forest classifier. For the classification, we used a training set constructed using a combination of cross-matched catalogs, visual inspection, transfer/active learning, and data augmentation. The classification model consists of several random forest classifiers organized in a hierarchical scheme. The classifier accuracy estimated on a test set is approximately 97%. In the unlabeled data, 3485 sources were classified as variables, of which 1321 were classified as periodic. Among the periodic classes, we discovered with high confidence one ÎŽ Scuti, 39 eclipsing binaries, 48 rotational variables, and 90 RR Lyrae, and for the nonperiodic classes, we discovered one cataclysmic variable, 630 QSOs, and one supernova candidate. The first data release can be accessed in the project archive of HiTS (http://astro.cmm.uchile.cl/HiTS/). © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-3881/aadfd

    Electronic and physico-chemical properties of nanmetric boron delta-doped diamond structures

    Get PDF
    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called deltadoped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6K<T<450 K). Depending on the sample, metallic or non-metallic behavior was observed. A hopping conduction mechanism with an anomalous hopping exponent was detected in the non-metallic samples. All metallic delta-doped layers exhibited the same mobility value, around 3.660.8 cm2/Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm.14 page

    Investigation of a hydraulic impact: a technology in rock breaking

    Get PDF
    The finite element method and dimensional analysis have been applied in the present paper to study a hydraulic impact, which is utilized in a non-explosive rock breaking technology in mining industry. The impact process of a high speed piston on liquid water, previously introduced in a borehole drilled in rock, is numerically simulated. The research is focused on the influences of all the parameters involved in the technology on the largest principal stress in the rock, which is considered as one of the key factors to break the rock. Our detailed parametric investigation reveals that the variation of the isotropic rock material properties, especially its density, has no significant influence on the largest principal stress. The influences of the depth of the hole and the depth of the water column are also very small. On the other hand, increasing the initial kinetic energy of the piston can dramatically increase the largest principal stress and the best way to increase the initial kinetic energy of the piston is to increase its initial velocity. Results from the current dimensional analysis can be applied to optimize this non-explosive rock breaking technology

    Generation of Porous Particle Structures using the Void Expansion Method

    Full text link
    The newly developed "void expansion method" allows for an efficient generation of porous packings of spherical particles over a wide range of volume fractions using the discrete element method. Particles are randomly placed under addition of much smaller "void-particles". Then, the void-particle radius is increased repeatedly, thereby rearranging the structural particles until formation of a dense particle packing. The structural particles' mean coordination number was used to characterize the evolving microstructures. At some void radius, a transition from an initially low to a higher mean coordination number is found, which was used to characterize the influence of the various simulation parameters. For structural and void-particle stiffnesses of the same order of magnitude, the transition is found at constant total volume fraction slightly below the random close packing limit. For decreasing void-particle stiffness the transition is shifted towards a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure

    Phenomenological glass model for vibratory granular compaction

    Full text link
    A model for weakly excited granular media is derived by combining the free volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965)]. This is made possible by relating the granular excitation parameter \Gamma, defined as the peak acceleration of the driving pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The resulting master equation is formally identical to that of Bouchaud's trap model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results are shown to compare favourably with a range of known experimental behaviour. This includes the logarithmic densification and power spectrum of fluctuations under constant \eta, the annealing curve when \eta is varied cyclically in time, and memory effects observed for a discontinuous shift in \eta. Finally, we discuss the physical interpretation of the model parameters and suggest further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR

    Detection of entanglement with few local measurements

    Full text link
    We introduce a general method for the experimental detection of entanglement by performing only few local measurements, assuming some prior knowledge of the density matrix. The idea is based on the minimal decomposition of witness operators into a pseudo-mixture of local operators. We discuss an experimentally relevant case of two qubits, and show an example how bound entanglement can be detected with few local measurements.Comment: 5 pages + 1 figur

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    Final analysis from RESONATE: Up to six years of follow‐up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma

    Get PDF
    Ibrutinib, a once‐daily oral inhibitor of Bruton's tyrosine kinase, is approved in the United States and Europe for treatment of patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). The phase 3 RESONATE study showed improved efficacy of single‐agent ibrutinib over ofatumumab in patients with relapsed/refractory CLL/SLL, including those with high‐risk features. Here we report the final analysis from RESONATE with median follow‐up on study of 65.3 months (range, 0.3‐71.6) in the ibrutinib arm. Median progression‐free survival (PFS) remained significantly longer for patients randomized to ibrutinib vs ofatumumab (44.1 vs 8.1 months; hazard ratio [HR]: 0.148; 95% confidence interval [CI]: 0.113‐0.196; P˂.001). The PFS benefit with ibrutinib vs ofatumumab was preserved in the genomic high‐risk population with del(17p), TP53 mutation, del(11q), and/or unmutated IGHV status (median PFS 44.1 vs 8.0 months; HR: 0.110; 95% CI: 0.080‐0.152), which represented 82% of patients. Overall response rate with ibrutinib was 91% (complete response/complete response with incomplete bone marrow recovery, 11%). Overall survival, censored for crossover, was better with ibrutinib than ofatumumab (HR: 0.639; 95% CI: 0.418‐0.975). With up to 71 months (median 41 months) of ibrutinib therapy, the safety profile remained consistent with prior reports; cumulatively, all‐grade (grade ≄3) hypertension and atrial fibrillation occurred in 21% (9%) and 12% (6%) of patients, respectively. Only 16% discontinued ibrutinib because of adverse events (AEs). These long‐term results confirm the robust efficacy of ibrutinib in relapsed/refractory CLL/SLL irrespective of high‐risk clinical or genomic features, with no unexpected AEs. This trial is registered at www.clinicaltrials.gov (NCT01578707)
    • 

    corecore