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ABSTRACT
In interconnected microcracks, or in microcracks connected to spherical pores, the
deformation associated with the passage of mechanical waves can induce fluid flow
parallel to the crack walls, which is known as squirt flow. This phenomenon can
also occur at larger scales in hydraulically interconnected mesoscopic cracks or frac-
tures. The associated viscous friction causes the waves to experience attenuation
and velocity dispersion. We present a simple hydromechanical numerical scheme,
based on the interface-coupled Lamé–Navier and Navier–Stokes equations, to simu-
late squirt flow in the frequency domain. The linearized, quasi-static Navier–Stokes
equations describe the laminar flow of a compressible viscous fluid in conduits em-
bedded in a linear elastic solid background described by the quasi-static Lamé–Navier
equations. Assuming that the heterogeneous model behaves effectively like a homo-
geneous viscoelastic medium at a larger spatial scale, the resulting attenuation and
stiffness modulus dispersion are computed from spatial averages of the complex-
valued, frequency-dependent stress and strain fields. An energy-based approach is
implemented to calculate the local contributions to attenuation that, when integrated
over the entire model, yield results that are identical to those based on the viscoelastic
assumption. In addition to thus validating this assumption, the energy-based ap-
proach allows for analyses of the spatial dissipation patterns in squirt flow models.
We perform simulations for a series of numerical models to illustrate the viability and
versatility of the proposed method. For a 3D model consisting of a spherical crack
embedded in a solid background, the characteristic frequency of the resulting P-wave
attenuation agrees with that of a corresponding analytical solution, indicating that the
dissipative viscous flow problem is appropriately handled in our numerical solution
of the linearized, quasi-static Navier–Stokes equations. For 2D models containing
either interconnected cracks or cracks connected to a circular pore, the results are
compared with those based on Biot’s poroelastic equations of consolidation, which
are solved through an equivalent approach. Overall, our numerical simulations and
the associated analyses demonstrate the suitability of the coupled Lamé–Navier and
Navier–Stokes equations and of Biot’s equations for quantifying attenuation and dis-
persion for a range of squirt flow scenarios. These analyses also allow for delineating
numerical and physical limitations associated with each set of equations.
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INTRODUCTION

Part of the energy of mechanical waves can be converted into
heat in a process that is called intrinsic attenuation, which is
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here simply referred to as attenuation. In the Earth’s crust,
rocks are commonly porous and saturated with water, occa-
sionally in combination with more viscous liquids and/or gas.
The presence of viscous fluids in the pores can be a major
cause of wave energy dissipation through physical processes
involving their displacement in the porous medium, necessar-
ily accompanied by dissipative friction. Indeed, strong and
frequency-dependent attenuation has been observed in fluid-
saturated rocks, mostly through laboratory experiments, and
has been interpreted as a result of wave-induced fluid pressure
diffusion (FPD), often denoted wave-induced fluid flow, at
the microscopic or mesoscopic scales (e.g. Best, McCann and
Sothcott 1994; Sams et al. 1997; Batzle, Han and Hofmann
2006; Adelinet et al. 2010; Tisato and Quintal 2013; Pimienta,
Fortin and Guéguen 2015; Subramaniyan et al. 2015; Chap-
man et al. 2016, 2019).

FPD at the microscopic scale is commonly referred to
as squirt flow. Simple models for squirt flow are based ei-
ther on interconnected flat pores which are highly compliant
(O’Connell and Budiansky 1977) or on connections between
these flat pores and much less compliant spherical pores (Mur-
phy, Winkler and Kleinberg 1986). Examples of highly com-
pliant flat pores include microcracks and grain contacts, while
non-flat intergranular pores are typical examples of stiffer
pores. The impact of squirt flow on attenuation from the ultra-
sonic to seismic frequency ranges is relatively well understood
for simple distributions of the idealized pore geometries men-
tioned above (e.g. Mavko and Jizba 1991; Dvorkin, Mavko
and Nur 1995; Chapman, Zatsepin and Crampin 2002; Gure-
vich et al. 2010; Collet and Gurevich 2016). In general though,
studies on more realistic models of the rock microstructure are
still unavailable, mainly due to the lack of appropriate numeri-
cal techniques and/or the lack of spatial resolution in microto-
mographic images of rock samples. From another standpoint,
squirt flow is not limited to the microscopic scale, but may
also occur in the mesoscopic scale range, that is, at scales
larger than the pore size but smaller than the prevailing wave-
length, in hydraulically interconnected mesoscopic cracks or
fractures parallel to their walls (Rubino et al. 2013).

In addition to FPD associated with squirt flow at the mi-
croscopic and mesoscopic scales, significant attenuation can
be caused by mesoscopic FPD associated with (i) patchy satu-
ration, that is, heterogeneities in the pore fluid saturation due
to the presence of fluids having extremely different compress-
ibilities (White 1975; Tisato and Quintal 2013) or (ii) strong
heterogeneities of the solid frame properties, such as compli-
ant fractures embedded in a much stiffer porous background
(White, Mikhaylova and Lyakhovitskiy 1975; Brajanovski,

Gurevich and Schoenberg 2005). The second phenomenon
plainly differs from squirt flow in interconnected fractures as
the predominant dissipative FPD takes place in the embed-
ding porous background with the dominant direction gener-
ally away or towards the fracture. As long as the embedding
background is porous and permeable, this dissipation process
prevails whether the fractures are interconnected or not and,
if they are, squirt flow tends to occur as well, albeit at consid-
erably higher frequencies (Rubino et al. 2013; Quintal et al.

2014).
A series of computationally efficient methodologies to

calculate attenuation due to mesoscopic FPD have been pro-
posed in the last decade (Masson and Pride 2007; Rubino,
Ravazzoli and Santos 2009; Wenzlau et al. 2010; Quintal
et al. 2011). They are based on solving Biot’s dynamic (1962)
or quasi-static (1941) poroelastic equations through the sim-
ulation of quasi-static compression or shear tests on models
that describe the representative elementary volume of a het-
erogeneous fluid-saturated porous medium. Based on this ap-
proach, Rubino et al. (2013) and Quintal et al. (2014) numeri-
cally study squirt flow in interconnected mesoscopic fractures,
which are represented as highly compliant features of very
high porosity and permeability embedded in a much stiffer
background of much lower porosity and permeability. Vinci,
Renner and Steeb (2014) use a hybrid-dimensional approach,
where the embedding background is also described as a poroe-
lastic medium based on Biot’s (1941) equations, while the
interconnected fractures are filled with a compressible fluid
described by a 1D solution for laminar flow. A limitation of
these techniques for studying classical microscopic squirt flow
is that Biot’s equations are conceived for the mesoscopic scale
and hence it is not clear whether and to what extent they
are appropriate for assessing the relevant phenomena at the
microscopic scale (Burridge and Keller 1981; Whitaker 1986;
Berryman 2005).

Zhang and Toksöz (2012) introduce a numerical ap-
proach for simulating squirt flow that overcomes any lim-
itation with respect to the microscopic scale by solving a
set of equations in which the elastic equation for the solid
domain is coupled with the linearized Navier–Stokes equa-
tion for the fluid domain. They solve the dynamic equations,
but perform quasi-static tests in the time domain, to quan-
tify attenuation caused by squirt flow in a 3D model derived
from a microtomographic image of Berea sandstone. How-
ever, only the large pores are resolved in the image, which
leads them to implement a hybrid method to compensate for
the cracks lost in the imaging process by combining the com-
putational approach with a theoretical model for the crack
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distribution. More recently, microtomographic imaging with
considerably larger spatial resolution has become available
(Madonna et al. 2013), and important developments in the
segmentation of corresponding images have been reported
(Madonna, Almqvist and Saenger 2012). Combined with ap-
propriate and efficient numerical schemes, these new tech-
niques can be used to study squirt flow in realistic models of
the rock microstructure.

Quintal et al. (2016) present a numerical approach based
on the simulation of quasi-static stress relaxation tests in the
time domain, which is similar to that of Zhang and Toksöz
(2012), but they neglect the inertia contribution in the coupled
equations. In these stress relaxation tests, a strain boundary
condition is instantaneously applied to the numerical model
and kept constant for a finite interval of time (e.g. Masson and
Pride 2007; Quintal et al. 2011). Quintal et al. (2016) compare
the results for squirt flow with those based on a numerical so-
lution of Biot’s (1941) quasi-static equations of poroelasticity
considering highly porous and permeable cracks embedded
in a background of very low porosity and permeability, such
that attenuation and dispersion associated with FPD in the
background occur at frequencies that are out of the investi-
gated frequency range. The results of the proposed approach
and of the approach based on Biot’s equations show good
agreement for attenuation and dispersion caused by squirt
flow in interconnected cracks. Additionally, expected spatial
discrepancies in the fluid velocity and dissipation fields, cal-
culated with the two numerical schemes, are observed and
discussed.

In this study, we extend and complement the study of
Quintal et al. (2016). We solve the same coupled quasi-static
Lamé–Navier and Navier–Stokes (LNS) equations, but here
in the frequency domain and by simulating oscillatory tests.
This readily allows for accurate attenuation and dispersion
results in a frequency range that is broader than that for time-
domain studies, in addition to greatly simplifying the numeri-
cal scheme by eliminating, together with the time derivatives,
problems associated with the temporal discretization. We suc-
cessfully compare results from 3D simulations with an ana-
lytical prediction for the characteristic frequency of the squirt
flow dissipation phenomenon. Then, we compare 2D numer-
ical results for attenuation and dispersion with those from an
equivalent numerical scheme based on Biot’s (1941) quasi-
static poroelasticity considering two squirt flow scenarios:
one featuring interconnected cracks and the other consisting
of cracks connected to a stiffer circular pore. These compar-
isons allow for illustrating the physical limitations of the ap-
proach based on Biot’s equations to model squirt flow and for

evaluating the numerical limitations of the presented approach
based on the coupled LNS equations.

COUPLED LAM É–NAVIER AND
NAVIER–STOKES EQUATIONS

Mathematical formulation

The coupled Lamé–Navier and Navier–Stokes (LNS) equa-
tions can be used to describe laminar flow of a viscous com-
pressible fluid in conduits embedded in an isotropic elastic,
linear solid background. The set of coupled equations con-
sists of the conservation of momentum and the constitutive
equations. The conservation of momentum is given by

div(σ ) = 0, (1)

where σ is the total stress tensor and div denotes its divergent.
Before writing the constitutive equations, we separate the total
stress tensor into its contributions in the solid and fluid phases
(subscripts s and f, respectively),

σ = ϕσ s + (ϕ − 1)σ f , (2)

which is the basic coupling idea, where ϕ = 1 in the solid
domain, while in the fluid domain ϕ = 0. The constitutive
equations for the corresponding total stress contributions in
equation (2) can be written as

σs = 2μdev(ε) + KseI, (3)

σ f = 2ηdev(iωε) + Kf eI, (4)

where ε is the strain tensor, dev(ε) denotes the deviatoric
strain related to the shape change, e is the trace of the strain
tensor related to the volume change, I is the identity tensor, i
represents the imaginary unit and ω is the angular frequency.
The material properties are represented by μ and Ks denoting
the shear and bulk moduli of the solid material, respectively,
Kf denoting the bulk modulus of the fluid, and η denoting
the shear viscosity of the fluid. The generalized constitutive
equation is written as

σ = ϕ
[
2μdev(ε) + KseI

] + (ϕ − 1)
[
2ηdev(iωε) + Kf eI

]
, (5)

and the generalized mathematical formulation, given by equa-
tions (1) and (5), can be used to describe a heterogeneous
medium that has a subdomain characterizing a solid frame
(ϕ = 1) and another corresponding to fluid-filled pores (ϕ =
0). The components of the stress and strain tensors σ and ε

are complex valued and frequency dependent.
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In the subdomain where ϕ = 1, equations (1) and (5)
reduce to the quasi-static Lamé–Navier equations of linear
elasticity and, in the subdomain where ϕ = 0, they reduce to
the linearized, quasi-static Navier–Stokes equations (Landau
and Lifshitz 1959) for the laminar flow of a compressible
fluid. The energy loss in this medium is entirely caused by
FPD, since we use a quasi-static formulation, which means
that inertial terms are absent.

Equations (1) and (5) are essentially identical to those
presented by Quintal et al. (2016), except that equation (5) is
written in tensor form and in the frequency domain, and the
solid and fluid contributions are here explicitly separated and
governed by the parameter ϕ.

Finite-element solution

Equations (1) and (5) are solved throughout the entire compu-
tational domain composed of spatial subdomains consisting
of a solid phase (ϕ = 1) or a fluid phase (ϕ = 0). Com-
plex solid and fluid displacements u(x, ω) at the boundaries
between subdomains are naturally coupled, as they are de-
scribed by the same unknown and are thus continuous across
these boundaries. The numerical solutions for 2D and 3D
problems are obtained using a finite-element direct solver and
employing unstructured meshes with Delauney triangular and
tetrahedral elements, respectively (Shewchuk 2002). The ele-
ments employ second-order (quadratic) shape functions with
nodal points appearing in the middle of the edges of elements
in addition to their vertices. This results in six nodal points for
the triangular elements and ten nodal points for the tetrahe-
dral elements. Furthermore, the material boundaries coincide
exactly with element boundaries. An efficient discretization
of subdomains having large aspect ratios, such as cracks, is
obtained by strongly varying the sizes of the elements by a few
orders of magnitude (Quintal et al. 2014, 2016). Our 2D nu-
merical problem is equivalent to a 3D case under plain strain
conditions, that is, no strain outside the modelling plane is
allowed to develop.

To assess P-wave attenuation and modulus dispersion,
we perform an oscillatory test by applying a harmonic
downward-oriented displacement homogeneously at the top
boundary of the model (e.g. Rubino et al. 2009; Carcione,
Santos and Picotti 2011; Milani et al. 2016). At the bottom
and along the lateral boundaries of the model, the displace-
ments in the vertical and horizontal directions, respectively,
are set to zero. The S-wave attenuation can be evaluated in a
similar manner by changing the boundary conditions to those
of a simple-shear test.

Viscoelastic approach to quantify attenuation

Based on the assumption that the entire heterogeneous model
behaves effectively as a homogeneous viscoelastic medium at
a larger spatial scale, we can calculate the effective attenua-
tion and dispersion using volume averages of the frequency-
dependent stress and strain fields (Jänicke, Quintal and Steeb
2015). Considering the medium as approximately isotropic,
the boundary conditions described in the previous subsec-
tion allow for the calculation of the complex-valued and
frequency-dependent P-wave modulus H corresponding to a
wave propagating in the vertical direction. The ratio between
its imaginary and real parts is used to quantify the P-wave
attenuation, expressed as the inverse of the quality factor
(O’Connell and Budiansky 1978)

1
Q(ω)

= Im{H}
Re{H} . (6)

Energy-based approach to quantify local attenuation

To quantify the local contribution to the total attenuation in
a 2D model of a rock sample based on the coupled LNS equa-
tions, we use an energy-based approach, which is analogous
to that described by Solazzi et al. (2016) for Biot’s equa-
tions. The local contribution 1/qkl from each finite-element
�kl of the 2D model domain to the total attenuation 1/Q is
given as

1
Q(ω)

=
nx∑

k=1

ny∑
l=1

1
qkl (ω)

δ2, (7)

where δ2 is the area of the element �kl. We use the definition
of the inverse quality factor that corresponds exactly to the
relation given in equation (6) for a linear viscoelastic material
that can be modelled by a network of springs and dashpots
(O’Connell and Budiansky 1978)

1
Q(ω)

= 〈�P(ω)〉
2ω 〈W(ω)〉 , (8)

where 〈�P〉 is the average power dissipated per cycle in
harmonic loading and 〈W〉 is the average strain energy per
cycle in the whole model domain. For our medium de-
scribed by the coupled LNS equations (equations (1) and (5)),
their contributions for each element �kl of the 2D model
domain can be written as functions of frequency as (e.g.
Winter 1987; Jaeger, Cook and Zimmerman 2007; Plawsky
2014)
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Figure 1 Sketch of a 3D numerical model embedding a spherical shell
of thickness 1 μm that represents a micro-crack. The side length of
the cube is 150 μm. The embedding background (grey regions) cor-
responds to quartz, while the crack is filled with water (blue region).
A 2D model consisting of a cross-section through the middle of the
cubic model is shown on the right-hand side.

〈
�Pkl (ω)

〉 = 2ηRe
{
ε̇xxε̇

∗
xx + ε̇yyε̇

∗
yy + ε̇xyε̇

∗
xy

− 1
3

(ε̇xx + ε̇yy)(ε̇xx + ε̇yy)
∗
}

kl

δ2, (9)

〈
Wkl (ω)

〉 = 1
4

Re
{
σxxε

∗
xx + σyyε

∗
yy + σxyε

∗
xy

}
kl
δ2, (10)

where a dot on top of a variable denotes the multiplication of
the variable by iω (e.g. ε̇xx = ωiεxx), and the symbol ∗ denotes
the complex conjugate. Using these equations, we can quantify
the local contribution 1/qkl from each element �kl per unit area
to the total attenuation 1/Q as

1
qkl (ω)

=
〈
�Pkl (ω)

〉
/δ2

2ω 〈W(ω)〉 , (11)

where the average strain energy per cycle 〈W〉 in the whole
model domain is obtained by simply summing the contri-
butions 〈Wkl〉 from each element �kl throughout the entire
domain

〈W(ω)〉 =
nx∑

k=1

ny∑
l=1

〈
Wkl (ω)

〉
. (12)

COMPARISON W I T H A N A LY T I C A L
SOLUTION

To compare numerical results based on the coupled LNS equa-
tions with a corresponding analytical solution, we consider a
3D numerical model containing a spherical crack embedded
in an elastic solid background with the properties of quartz
(Fig. 1). The subdomain within the spherical crack is described
as a viscous fluid with the material properties of water. The

Table 1 Material properties for the model shown in Fig. 1

Material Property Value

Shear modulus of the solid μ 44.3 GPa
Bulk modulus of the solid Ks 37.8 GPa
Shear viscosity of the fluid η 0.003 Pa × s
Bulk modulus of the fluid Kf 2.4 GPa

material properties are given in Table 1. The side of the cubic
model is 150 μm, while the crack aperture is 1 μm.

The numerical results are based on the viscoelastic equiv-
alent approach, which uses the volume averages of the
frequency-dependent stress and strain fields (Fig. 2). The ver-
tical harmonic oscillatory compression, which is applied as
a displacement boundary condition on top of the model, de-
forms the sub-horizontal top and bottom parts of the spheri-
cal crack much more than the sub-vertical parts on the sides.
This induces a fluid pressure difference between these regions,
which in turn causes fluid flow, or fluid pressure diffusion

Figure 2 Real part of the P-wave modulus Re(H) and attenuation
1/Q calculated using the viscoelastic equivalent approach from the
numerical solution based on the coupled LNS equations for the 3D
model shown in Fig. 1, a 3D model consisting of a cylinder embedding
the spherical crack, and a 2D model consisting of a cross-section in the
middle of the cubic or of the cylindrical model. The vertical green line
indicates the characteristic frequency according with the analytical
solution by O’Connell and Budiansky (1977) for such a spherical
crack.
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(FPD), from the top and bottom parts towards the lateral
part of the spherical crack and, thus, P-wave attenuation and
dispersion of the P-wave modulus.

O’Connell and Budiansky (1977) analytically derived the
characteristic frequency for a thin spherical shell of fluid which
completely surrounds a solid sphere and is submitted to an
external macroscopic shear stress field

fc = 1
2

Ks

η
α3, (13)

where α is the crack aspect ratio. For the special geometry
considered in this squirt flow model, the crack aspect ratio α

is expressed as the ratio of crack aperture to one quarter of
the circumference of the spherical fluid shell. Using the mate-
rial properties considered for our numerical model (Table 1;
Fig. 1), we obtain from equation (13) the value denoted by a
vertical green line in Fig. 2. The excellent agreement between
this result and the characteristic frequency of the numerical
results for the 3D cubic model shown in Fig. 1 corroborates
the validity of our numerical implementation of the linearized,
quasi-static Navier–Stokes equations in the framework of the
coupled LNS equations.

For comparison with the numerical results for the cubic
model (Fig. 1), we additionally consider (i) a 2D model con-
sisting of a cross-section in the middle of the cubic model,
as indicated on the right-hand side of Fig. 1, and (ii) a 3D
cylindrical model containing an identical spherical crack with
both the diameter and height of the cylinder equal to the side
length of the cubic model. We use again the properties given in
Table 1. The corresponding attenuation and dispersion results
are also shown in Fig. 2.

Comparing results from the two 3D models, cubic and
cylindrical, we observe that they have the same characteris-
tic frequency, as expected, while the attenuation has a higher
overall magnitude for the cylindrical model (Fig. 2). This oc-
curs because the cylindrical model has a lower relative volume
of elastic solid embedding the spherical crack, compared with
the cubic model. This renders the cylindrical model softer, as
evidenced by the generally lower real-valued P-wave modulus,
which allows for a larger deformation of the spherical crack
and thus results in higher energy dissipation.

Comparing the results from the cubic model containing a
spherical shell with the 2D model depicted on the right-hand
side of Fig. 1, we observe that the latter is characterized by a
higher compressibility, higher attenuation and a shift of the
characteristic frequency to a lower value (Fig. 2). These differ-
ences are consequences of the inherently larger relative crack
volume of the 2D model. To visualize this, we can imagine

replacing such a 2D model with a numerically equivalent 3D
model that consists simply of an extrusion of the 2D model
into a cube containing a horizontal cylindrical fluid shell. The
crack volume in this 2.5D model is evidently larger than that in
the 3D model containing a spherical crack. The aspect ratios of
the two cracks are identical, as they are the ratio of crack aper-
ture to one quarter of the circumferences of the corresponding
sphere or circle, which are equal. Despite the identical aspect
ratio, the different shape and volume of the crack in the 2.5D
model allows for a larger amount of fluid to be displaced and
a longer pressure equilibration process, which translates into
a higher dissipation and a lower characteristic frequency, re-
spectively. Additionally, the larger crack volume makes the
2.5D model more compressible as evidenced by a generally
lower real-valued P-wave modulus, which also contributes to
the increase in attenuation. The comparison between numer-
ical results from a 3D cubic model with those of a 2D model
points to the importance of 3D effects that are neglected in
studies based on 2D models, as shown by Hunziker et al.

(2018). An important aspect is that 2D models overestimate
attenuation.

COMPARISONS WITH SOLUTIONS OF
BIOT’S EQUATIONS

Interconnected rectangular cracks

To compare the results of our numerical scheme based on
the coupled Lamé–Navier and Navier–Stokes (LNS) equa-
tions with those of an equivalent numerical scheme based
on the solution of Biot’s (1941) quasi-static equations (Quin-
tal et al. 2011), we consider a 2D model, which is identi-
cal to that considered by Quintal et al. (2016) and corre-
sponds to a fundamental block of periodically distributed

Figure 3 Sketch of the numerical model containing interconnected
rectangular cracks. The aperture and length of the cracks are 1 mm
and 14 cm, respectively. The crack length is defined from the crack
intersection to its end.
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Table 2 Material properties for the scheme based on Biot’s equations

Material Parameter Background Crack

Porosity 0.06 0.90
Permeability 1 mD 8 × 107 mD (=k)
Bulk modulus of the solid grain 40 GPa 40 GPa
Bulk modulus of the dry frame 36 GPa 0.001 GPa
Shear modulus of the dry frame 44 Gpa 0.001 GPa
Bulk modulus of the fluid 2.4 GPa 2.4 GPa
Shear viscosity of the fluid 0.003 Pa × s 0.003 Pa × s

Table 3 Material properties for the scheme based on the coupled
LNS equations

Material Property Value

Shear modulus of the solid μ 44 GPa (=μu)
Bulk modulus of the solid Ks 36.4 GPa (=Ku)
Shear viscosity of the fluid η 0.003 Pa × s
Bulk modulus of the fluid Kf 2.4 GPa

pairs of interconnected cracks (Fig. 3). The scheme based on
Biot’s (1941) quasi-static equations also accounts only for
attenuation caused by FPD, by neglecting the attenuation as-
sociated with inertial effects, and is here also modified to per-
form simulations in the frequency domain. The two numerical
schemes use identical meshes.

In order to obtain comparable results from the two nu-
merical schemes, the material properties for the scheme based

on Biot’s equations are chosen to describe a solid frame
having very low porosity in the embedding background and
very high porosity and compressibility within the cracks
(Table 2). The permeability in the background is set to a very
low value. Contrastingly, since the flow direction in the cracks
is essentially parallel to the crack walls, we use a solution of
Stokes’ equations, known as cubic law, for laminar flow be-
tween two smooth and parallel plates (e.g., Jaeger et al. 2007)
to calculate the much higher permeability in the cracks

k = h2

12
, (14)

where h is the crack aperture. The resulting permeability for an
aperture of 0.1 cm (Fig. 3) is shown in Table 2 together with
the properties of the saturating pore fluid, which are those
of water both in the cracks and in the porous background.
As compression applied to open cracks will be predominantly
supported by the fluid (Pride, Berryman and Harris 2004), the
cracks considered in this study were simply characterized by
a bulk modulus of the dry frame that is much lower than that
of the saturating fluid. The shear modulus of the dry frame
was chosen to have a correspondingly low value (Nakagawa
and Schoenberg 2007).

A much simpler set of material properties is used for
the scheme based on the coupled LNS equations and given
in Table 3. The properties of the fluid within the crack are
identical to those used for Biot’s equations (Table 2). To allow
for results that are comparable with those based on Biot’s

Figure 4 Real part of the P-wave modulus Re(H) and attenuation 1/Q calculated using the viscoelastic equivalent approach from the numerical
solutions based on Biot’s quasi-static equations and the coupled LNS equations.
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Figure 5 Attenuation 1/Q calculated using the viscoelastic equivalent approach and the energy approach from the numerical solutions based on
Biot’s quasi-static equations and the coupled LNS equations.

equations, the bulk and shear moduli of the non-porous solid
background, described by the coupled LNS equations, are
set to be equal to the undrained bulk and shear moduli Ku

and μu of the poroelastic material in the porous background
(Gassmann 1951).

The resulting P-wave modulus dispersion and attenuation
based on both Biot’s equations and on the coupled LNS equa-
tions are obtained using the viscoelastic equivalent approach
(Fig. 4). For the results based on Biot’s equations, we observe
two attenuation peaks accompanied by two corresponding in-
flections of the dispersion curves. The attenuation peak and
corresponding dispersion at lower frequencies are due to FPD
in the background. In the compression cycle of the imposed
oscillations, the fluid in the compressible cracks experiences
a larger pressure increase than in the less compressible back-
ground. The resulting fluid pressure difference is the cause of
FPD in the background. This low-frequency phenomenon is
captured only by the scheme based on Biot’s poroelastic equa-
tions because the scheme based on the coupled LNS equations
describes the background embedding the cracks as an elastic
non-porous solid. The attenuation peak and corresponding
dispersion at higher frequencies are due to squirt flow or,
more precisely, due to FPD within the interconnected cracks,
parallel to the crack walls. Basically, fluid flows from one
crack into the other one. This happens because, in the com-
pression cycle of the vertically imposed oscillations, only the
horizontal cracks are significantly deformed. Thus, fluid in
the horizontal cracks experiences a larger pressure increase
than in the less deformed vertical crack. The resulting fluid

Figure 6 Local contribution 1/q to the total attenuation 1/Q in the
spatial domain illustrated in Fig. 3, at (a) fc1/10, (b) fc1 and (c) fc1

× 10, where fc1 is the characteristic frequency of the low-frequency
attenuation peak (Figs 4 and 5) associated with dissipation in the
embedding background. One numerical solution is based on Biot’s
equations and the other on the coupled LNS equations.
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Figure 7 Zoom in on region A of the spatial domain illustrated in
Fig. 3 for the local contribution 1/q to the total attenuation 1/Q, at
fc2/10 (top), fc2 (middle) and fc2 × 10 (bottom), where fc2 is the char-
acteristic frequency of the high-frequency attenuation peak (Figs 4
and 5) associated with squirt-flow dissipation within the cracks. At
these high frequencies, the field 1/q is not shown for the entire model
because it is difficult to visualize the process within the very thin
cracks. One numerical solution is based on Biot’s equations and the
other on the coupled LNS equations.

pressure difference between the differently oriented cracks is
the cause of squirt flow. This high-frequency phenomenon is
captured by both numerical schemes with excellent agreement
between their results.

The employed numerical model as well as the material
properties (Fig. 3; Tables 2 and 3) used for the results shown
in Fig. 4 are identical to those used by Quintal et al. (2016) to
solve the same set of coupled LNS equations and Biot’s equa-
tions in the time domain. The main difference is that here,
solving these equations in the frequency domain, we obtain
results for a very broad frequency range comprising nine or-
ders of magnitude (10−2 to 107 Hz), while the previous results
covered only a range of four orders of magnitude (103 to
107 Hz). In both cases, the frequency range could still be
broadened, but this is significantly more difficult for simula-
tions in the time domain because the time increment needs to

Figure 8 Fluid velocity in the vertical direction Vy, local contribution
1/q to the total attenuation 1/Q and shear stress in the fluid τxy

on a cross-section of the vertical crack at 21 cm (Fig. 1) and at the
characteristic frequency fc2 of the high-frequency attenuation peak
(Figs 4, 5 and 7). One numerical solution is based on Biot’s equations
and the other on the coupled LNS equations. The dashed line indicates
the mean value of the corresponding result based on the LNS solution.

be very small to accurately capture the physical phenomenon
at high frequencies while the total time needs to be very long to
also capture the physical phenomenon at low frequencies. This
is why Quintal et al. (2016) only computed the dissipation as-
sociated with squirt flow. Furthermore, in comparison with
their results based on Biot’s equations in the time domain, our
current results based on Biot’s equations in the frequency do-
main are slightly different at frequencies between 103 and 104

Hz, because only here the effect of the low-frequency FPD
phenomenon, which is non-negligible at those frequencies,
was accurately captured.

To verify that the results based on the coupled LNS equa-
tions (Fig. 4) correctly account for the total attenuation, we
use the energy-based approach to compute the local attenu-
ation contributions (equation (11)) of all elements and then
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Figure 9 Attenuation 1/Q calculated using the energy approach in the square interconnection between cracks (1 mm2) and in the whole model
(Fig. 3). These results are based on the numerical solutions of Biot’s equations and the coupled LNS equations.

integrate them (equation (7)) to obtain the total attenuation.
In Fig. 5, we observe excellent agreement between the results
based on the energy-based approach and those obtained based
on the viscoelastic assumption, which validates the use of the
viscoelastic approach to upscale attenuation and dispersion
characteristics from our heterogeneous medium described by
the coupled LNS equations. For consistency, we do the same
for the numerical scheme based on Biot’s equations using the
equations derived by Solazzi et al. (2016) and, as these authors
point out, the agreement is nearly perfect (Fig. 5).

In addition to validating the viscoelastic assump-
tion, the energy-based approach allows for quantifying the
spatial distribution of the dissipation in the considered nu-
merical model. Figure 6 displays the local attenuation field
in the model shown in Fig. 3 at the characteristic frequency
fc1 of the first attenuation peak (Figs 4 and 5), which oc-
curs at lower frequencies and is associated with FPD in the
background. Also shown are the corresponding results for
two frequencies, which are higher and lower than fc1 by one
order of magnitude, fc1 × 10 and fc1/10. The results based
on Biot’s equations illustrate the spatial dissipation patterns
in the low-porosity and low-permeability background. Con-
versely, as this phenomenon is not modelled by the scheme
based on the coupled LNS equations, the corresponding im-
ages obviously show zero local attenuation throughout the
model.

Figure 7 displays the local attenuation field at the char-
acteristic frequency fc2 of the second attenuation peak (Figs 4
and 5), which occurs at higher frequencies and is due to squirt
flow within the cracks. Also shown are the results for two fre-
quencies, which are higher and lower than fc2 by one order of
magnitude, fc2 × 10 and fc2/10. These fields are shown only for
a zoom in the centre of the model (area indicated by square A
in Fig. 3), so that the squirt flow process within the thin cracks

can be visualized. We see that local attenuation patterns based
on Biot’s equations and on the coupled LNS equations exhibit
significant differences, despite the agreement of their results
for the total attenuation shown in Fig. 4.

For a more detailed analysis, Fig. 8 depicts, at the char-
acteristic frequency fc2, the fluid velocity in the vertical direc-
tion, the local attenuation and the shear stress in the fluid on
a cross-section of the vertical crack at 21 cm. For the results
based on the coupled LNS equations, these three fields exhibit
spatially variable profiles. The fluid velocity has a parabolic
profile, the local dissipation exhibits a logarithmic decay to-
wards the centre of the crack, and the linear shear stress is
simply the gradient of the fluid velocity multiplied by the
fluid viscosity. These variations of the fields across the crack
occur because, when flowing, a viscous fluid resists the rel-
ative motion of virtual fluid layers with differing velocities,
and this viscous resistance or friction causes dissipation. For
the results based on Biot’s equations, the corresponding pro-
files are approximately constant, in general appearing to be
the mean value of the corresponding result observed for the
coupled LNS equations. The profile of the local attenuation
is, in fact, exactly the mean value of the variable one based on
the coupled LNS equations, which demonstrates that the en-
ergy dissipation within the crack is correctly captured by the
inherent upscaling associated with Biot’s equations. On the
other hand, looking again at Fig. 7, this does not seem to be
the case in the small square region representing the intercon-
nection between the two cracks. While the local dissipation
computed with the coupled LNS equations is quite high in
this region, low values are obtained with Biot’s equations. We
then quantify the contribution of the region representing the
interconnection between the two cracks to the total attenua-
tion and show the results from the two numerical schemes in
Fig. 9. The dissipation accounted for by Biot’s equations in this
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Figure 10 (a) Real part of the P-wave modulus Re(H) and atten-
uation 1/Q calculated using the viscoelastic equivalent approach
from the numerical solutions based on Biot’s quasi-static equations
and the coupled LNS equations. (b) Zoom in the central region
of the spatial domain for the local contribution 1/q to the total at-
tenuation 1/Q at fc2, where fc2 is the characteristic frequency of the
attenuation peak associated with dissipation within the cracks.

region is indeed about one order of magnitude lower than that
accounted for by the scheme based on the coupled LNS equa-
tions, revealing that Biot’s equations fail in the interconnection
between cracks, when applied to squirt flow scenarios that are
essentially microscopic. The underestimation by Biot’s equa-
tions of the dissipation in the interconnection between cracks
is, however, negligible with respect to the total attenuation in
the considered model.

Interconnected cracks with asperities

The discrepancy between results from the two numerical
schemes in the interconnection between cracks could sug-
gest a possible failure of Biot’s equations in accounting for

Figure 11 (a) Real part of the P-wave modulus Re(H) and attenua-
tion 1/Q calculated using the viscoelastic equivalent approach from
the numerical solutions based on Biot’s quasi-static equations and
the coupled LNS equations. (b) Zoom in of the central region of the
spatial domain for the local contribution 1/q to the total attenuation
1/Q at the characteristic frequency of the attenuation peak associated
with dissipation within the cracks fc2.

the dissipation in, for instance, cracks having protuberant as-
perities on the walls. To investigate this, we consider two
additional models of interconnected cracks, which are simi-
lar to those shown in Fig. 3 but with a significant amount
of asperities of triangular shape along the crack walls. We
use the same rock physical properties as for the previous
model (Tables 2 and 3). First, we consider the asperities in
phase making the opposite walls perfectly symmetric (inset in
Fig. 10a). Second, we consider the asperities as being out of
phase, which gives a tortuous character to the cracks (inset in
Fig. 11b).

The results from the numerical simulations shown in
Figs 10(a) and 11(a) indicate that Biot’s equations account
for the correct magnitude of dissipation in those models, al-
though we observe a shift of the attenuation peak with respect

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 2196–2212



Energy loss caused by squirt flow 2207

Figure 12 (a) Zoom in on numerical
meshes with decreasing spatial resolution
at an arbitrary part of a vertical crack
(Fig. 3). (b) Corresponding numerical so-
lutions based on Biot’s equations and on
the coupled LNS equations.

to frequency as compared with the results based on the cou-
pled LNS equations. This shift is expected because the effective
permeability within the cracks changes with the introduction
of the asperities, while we still use the permeability obtained
for the model shown in Fig. 3. To obtain good agreement of
the numerical solutions with regard to the characteristic fre-
quency would require estimating the permeability in the rough
cracks for subsequent use in the numerical scheme based on
Biot’s equations.

We also inspect the local attenuation fields at the char-
acteristic frequency fc2 of the squirt flow attenuation peak.
Figure 10(b) reveals a certain similarity of the patterns ob-
tained with the coupled LNS equations and with Biot’s equa-
tions, with the highest values of attenuation occurring at
the narrowest parts of the cracks. Figure 11(b) shows lo-
cal attenuation patterns that are more complicated, but the
highest values of attenuation occur also at the narrowest

parts of the cracks, which are at the edges of the trian-
gular asperities, for the results based on both numerical
schemes.

In addition to the same magnitude for the total attenu-
ation at the respective characteristic frequencies for the two
numerical schemes (Figs 10a and 11a), just as we observed
for the results from the model shown in Fig. 3, we observe
in Figs 10(b) and 11(b), again, very low values in the local
attenuation field at the crack intersection obtained with Biot’s
equations, in contrast to very high values obtained with the
coupled LNS equations, with negligible effects for the total
attenuation.

Spatial resolution

To assess the computational needs of the two numerical
schemes in terms of spatial resolution inside the cracks, we
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Figure 13 Sketch of the numerical model containing four rectangular
cracks connected to a circular pore. To create this model, a circle
with a radius of 4 cm was placed in the centre of the model shown in
Fig. 3.

perform a series of simulations for the model shown in
Fig. 3, with decreasing sizes of second-order (quadratic) nu-
merical elements (Fig. 12a). Each triangular element has six
nodal points distributed in the three vertices and in the middle
of the three edges.

Figure 12(b) shows that, for the numerical solution based
on the coupled LNS equations, the “coarse” mesh is adequate
while the “very coarse” mesh provides incorrect results. For
the numerical solution based on Biot’s equations, however,
the “very coarse” mesh still provides accurate results as the
upscaled fields across the cracks, such as those observed in
Figs 7 and 8, can be resolved by less nodal points than those
based on the coupled LNS equations.

Circular pore connected to rectangular cracks

In this subsection, we modify the 2D numerical model shown
in Fig. 3 by simply placing a circular void in its centre
(Fig. 13). The new model can then be described as containing
four compliant rectangular cracks, which could be interpreted
as grain contacts at the microscopic scale, connected to a stiffer
circular pore. We again perform numerical simulations based
on both the coupled LNS equations and on Biot’s equations.
For consistency and to keep the analysis simple, the material
properties used for the background and for the pore space
are again those used for the model of interconnected cracks
(Fig. 3; Tables 2 and 3). For the numerical scheme based on
Biot’s equations, the same material properties are used for the
cracks and for the circular pore (Table 1).

Figure 14 shows the numerical results based on the vis-
coelastic equivalent approach for the model shown in Fig. 13.
Two attenuation peaks accompanied by two corresponding
inflections of the dispersion curves are obtained with Biot’s
equations. The attenuation peak and corresponding disper-
sion at lower frequencies are caused by FPD in the back-
ground. The attenuation peak and corresponding dispersion
at higher frequencies are caused by squirt flow. We again
observe excellent agreement between the results from both
numerical schemes for the squirt flow mechanism. This shows
that Biot’s equations are suitable also for microscopic scenar-
ios where a solid frame present within in the circular pore
is rather unrealistic as well as the relatively high permeability

Figure 14 Real part of the P-wave modulus Re(H) and attenuation 1/Q calculated, based on the viscoelastic equivalent approach, from numerical
solutions of Biot’s quasi-static equations and the coupled LNS equations.
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Figure 15 Zoom in of regions (a) A and (b) B indicated in Fig. 13
showing the local contribution 1/q to the total attenuation 1/Q at the
characteristic frequency fc2 of the attenuation peak (high-frequency
peak in Fig. 14) associated with dissipation within the cracks.

and porosity existing in the background medium, as compared
with those of solid grains.

To better understand the squirt flow phenomenon pre-
vailing in the considered model, it is useful to remember that,
in the compression cycle of the oscillatory test, the applied
vertical compression deforms significantly only the horizontal
cracks. This causes fluid to flow, or FPD, from the horizontal
cracks into the circular pore and then, to a much lesser extent,
from the circular pore into the vertical cracks. Correspond-
ingly, higher dissipation occurs in the horizontal cracks, as
illustrated by the local attenuation fields shown in Fig. 15.

Comparison between two squirt flow scenarios

It is interesting to compare the dissipation processes prevailing
in the two different models shown in Figs 3 and 13. On the one
hand, we have just illustrated in Fig. 15 that, when the four
cracks are connected to a circular pore (Fig. 13) and compres-
sion is vertical, most of the dissipation occurs in the horizontal
cracks. On the other hand, Fig. 7 shows that, when cracks are
connected directly to each other (Fig. 3), dissipation of similar
magnitude occurs in both horizontal and vertical cracks. This
difference in the dissipation processes of the two models is
quantified in Fig. 16. For directly interconnected cracks, both
horizontal and vertical cracks contribute similarly to the to-
tal attenuation in the model, while for cracks connected to a

Figure 16 Attenuation 1/Q calculated using the energy approach from
the numerical scheme based on the coupled LNS equations for the
models shown in Fig. 3 (upper plot) and Fig. 13 (lower plot). The
attenuation contributions are from (i) the whole model, (ii) from
horizontal cracks only and (iii) from vertical cracks only.

circular pore, the horizontal cracks account for almost the
entire dissipation, considering vertical compression.

Spatial scale

The 2D squirt flow models discussed here were presented
with centimetric dimensions (Figs 3 and 13). This is clearly
disturbing, particularly for the model shown in Fig. 13, which
resembles a typical microscopic squirt flow scenario. It is thus
important to remark that the absolute spatial dimensions of
those models have no effect on attenuation and dispersion
caused by squirt flow. In terms of geometry, squirt flow de-
pends only on dimensionless attributes. For example, the char-
acteristic frequency is controlled by the aspect ratio of the
cracks (ratio of aperture to length) having smooth walls, as
predicted by corresponding analytical studies (O’Connell and
Budiansky 1977; Murphy et al. 1986; Gurevich et al. 2010).

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 2196–2212



2210 B. Quintal et al.

This is corroborated by the fact that, when the models shown
in Figs 3 and 13 were rescaled, the simulations produced re-
sults for squirt flow that are identical to those shown in Figs 4
and 14. This was done by rescaling the 40 × 40-cm models
into 400 × 400-μm models while keeping the relative dimen-
sions unchanged.

CONCLUSIONS

We extended and complemented a previous study by modify-
ing its numerical scheme based on a solution of the coupled
Lamé–Navier and Navier–Stokes (LNS) equations to simu-
late, here in the frequency domain, squirt flow in cracks em-
bedded in an elastic solid. Relying on the assumption that the
corresponding heterogeneous models behave effectively as vis-
coelastic homogeneous media at a larger scale, the resulting at-
tenuation and stiffness modulus dispersion were based on vol-
ume averages of the stress and strain fields over the entire com-
putational domain. To test this assumption, we implemented
an energy-based approach to compute the local attenuation
based on the dissipated and stored energy in each element of
the numerical model. Integration of the local attenuation over
the entire model yielded results which precisely agree with the
attenuation results from stress–strain volume averages based
on, and thus validating, the viscoelastic assumption. Addition-
ally, the energy-based approach provides an accurate means
to locally study the dissipation phenomenon by allowing for a
visualization of the heterogeneous dissipation field within the
model and a quantification of the contribution from certain
subdomains to the total attenuation.

We performed 3D simulations based on the coupled LNS
equations considering a squirt flow model that consisted of
a spherical crack embedded in an elastic solid. The charac-
teristic frequency observed in the numerical results was com-
pared with that of a corresponding analytical solution. Their
good agreement indicates that the dissipative viscous flow
problem is correctly handled in our numerical solution of the
linearized, quasi-static Navier–Stokes equations. These nu-
merical results were also compared with those based on a
2D model to allow for a first-order assessment of 3D effects
that are neglected in 2D studies. Our 2D study overestimates
attenuation.

We performed 2D simulations based on the coupled LNS
equations considering two squirt flow models. One model
consisted of interconnected cracks and the other one of cracks
connected to a circular pore. For comparison, we also per-
formed corresponding simulations based on Biot’s equations.
We observed that the fluid velocity profile across a crack

aperture is parabolic when computed with the linearized
Navier–Stokes equations, while it is approximately constant
when computed with Biot’s equations. Meanwhile, the local
attenuation based on the Navier–Stokes equations exhibit a
logarithmic decay towards the centre of the crack aperture,
while the one based on Biot’s equations is constant and equal
to the mean of the variable value based on the Navier–Stokes
equations. Despite these differences in the fluid velocity and
local attenuation fields, the results from the different numeri-
cal schemes exhibited excellent agreement for the total P-wave
attenuation and modulus dispersion caused by squirt flow. A
detailed inspection of the local attenuation fields, however,
indicates that Biot’s equations fail to account for the correct
amount of dissipation in the interconnection between cracks,
in comparison with the results based on the coupled LNS
equations.

Additional 2D simulations considering interconnected
cracks with asperities along their walls revealed that the mag-
nitude of the total attenuation is accurately quantified by
Biot’s equations for these models as well. The only difference
with respect to the results from the coupled LNS equations
was a frequency shift of the resulting attenuation curves. This
shift occurs because the effective permeability in the cracks
changes with the insertion of asperities, which was naturally
accounted for by the scheme based on the coupled LNS equa-
tions, but not for Biot’s equations. While corresponding ef-
fective models for permeability as well as for stiffness are
available, the fact that the numerical scheme based on the cou-
pled LNS equations does not require any effective crack/pore
properties makes it highly suitable for realistic simulations of
squirt flow effects in complex models, such as those derived
from high-resolution microtomographic images of rock sam-
ples. On the other hand, compared with Biot’s equations, the
scheme based on the coupled LNS equations does require a
larger spatial resolution and thus more computational power
to simulate the variable fluid velocity and local attenuation
profiles within the cracks. To alleviate this problem, we used
a quadratic finite-element formulation, which allowed for ap-
proximating the quadratic fluid velocity profile in the cracks
with a relatively low number of elements across their aperture.
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