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Abstract 

Finite element method and dimensional analysis have been applied in the present paper to 

study a hydraulic impact, which is used in a non-explosive rock breaking technology in 

mining industry. The impact process of a high speed piston on liquid water, previously 

introduced in a borehole drilled in rock, is numerically simulated. The research is focused on 

the influence of all the parameters involved in the technology on the largest principal stress 

magnitude in the rock, which is considered as one of the key factors to break the rock. Our 

detailed parametric investigation reveals that the variation of the rock material properties, 

especially its density, has no significant influence on the largest principal stress, which 

implies a good adaptability of the method for different rock materials. The influences of the 

depth of the hole and the depth of the water column are also very small. On the other hand, 

increasing the initial kinetic energy of the piston can dramatically increase the largest 

principal stress and the best way to increase the initial kinetic energy of the piston is to 

increase its initial velocity. Results from the current dimensional analysis can be applied to 

optimize this non-explosive rock breaking technology. 

 

Keywords: Finite element simulation, Dimensional analysis, Rock breaking, Non-explosive 

method, Hydraulic impact. 

 

1. Introduction 

Explosives are commonly used to fragment large rock masses in modern mining practice. 

From the technical point of view, although explosive method is powerful, it does not produce 

fragments with homogeneous size distribution. In many situations the amount of very fine 

rocks is high, while in other situations the amount of oversized boulders could be excessive. 
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Furthermore, explosive method involves complex drilling, blasting, scaling, ground support 

and the evacuation of people and equipment before blasting. Such a multi-activity cycle is 

time-consuming, inefficient and unproductively expensive [1]. Another major concern with 

explosive blasting is the associated danger and undesirable impact on the environment such as 

fly rocks, air blast, noise pollution and toxic fumes. When blasting occurs close to residential 

areas, or during tunnel construction, environmental protection regulation could seriously 

affect the rate of rock excavation. In some cases, blasting would be excluded as an acceptable 

method of rock breaking. Apart from the breaking of large rock masses for transportability 

purposes, tunnelling requires more carefully controlled rock breaking. Oversized boulders 

often cause blockage of mine draw points. When such blockage occurs, extensive shutdown 

of mine operation will result, causing loss of millions of dollars per hour. Thus, fast, simple, 

safe and clean methods of breaking boulders are required in some cases to make total mining 

operation efficient. 

 

To overcome the drawbacks of explosive methods, several non-explosive technologies have 

been developed in the past [1]. Young [2] provided an overview and compared the pros and 

cons of various methods of pressurising a borehole in a rock mass, including small charge 

explosive and propellant, water jets, firing of high speed water slugs, mechanical splitters, and 

high pressure gases. McCarthy [3] proposed the use of propellant cartridge in a predrilled hole 

to provide the breaking force. In the latest patent by Young [4], a high-pressure foam was 

utilized to replace explosive technology. The controlled-foam injection method invented by 

Young [1, 4] has a number of advantages, including lower maximum pressure and the 

maintenance of pressure during fracture by virtue of the compressibility of the foam. Another 

non-explosive rock breaking method was invented and patented by Denisart et al. [5], which 

is illustrated in Fig. 1. The hydraulic fluid, such as water, is introduced in a pre-drilled 
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borehole and is impulsively loaded by a high speed piston. The highly pressurized water, with 

the reflection of the pressure wave, will result in huge stresses in the rock mass, especially at 

the bottom of the hole, which is a stress raiser. Consequently, cracks will be initiated around 

the borehole, especially at the bottom, and the pressurized water will penetrate into the cracks, 

providing the driving force for crack propagation. Eventually, cracks will propagate back to 

the surface due to free surface effect and a volume of the hard material will be removed. 

 

All the available inventions and patents focused on the principle of the rock breaking 

methods, i.e., different approaches are used to answer the basic question of how to break a 

rock mass. In terms of the application of the non-explosive technology, one needs to quantify 

many parameters, such as the depth of the borehole and the initial velocity of the piston, etc. 

In the current investigation, the dimensional analysis and numerical method are applied to 

quantify the hydraulic impact process, which is involved in a non-explosive rock breaking 

technology as shown in Fig. 1. The efficiency of the impact is evaluated by the largest 

principal stress magnitude in the rock during an impact process. Numerical results from the 

investigation will assist industry to quantitatively apply this non-explosive rock breaking 

technology and, therefore, to improve rock breaking efficiency. 

 

This paper is structured as follows. The finite element model to simulate the hydraulic impact 

is presented in Section 2. The relationship between the largest principal stress magnitude in 

the rock and all the processing parameters is discussed in Section 3. In Section 4, detailed 

numerical results on the influence of all the parameters on the largest principal stress 

magnitude are discussed. Finally, conclusions are given in Section 5. 
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2. Impact simulation 

The finite element method has been applied to simulate the hydraulic impact process. We use 

a finite element package, CASTEM, to create the finite element mesh, a PERL script to 

translate CASTEM meshes into ABAQUS meshes, the commercial package 

ABAQUS/Explicit to perform the simulations, and a PYTHON script to automate this 

simulation process. 

 

2.1. Finite element mesh 

The borehole, as shown in Fig. 1, can be idealized as a cylinder. Therefore, this problem can 

be treated as axisymmetric. Moreover, the rock body can be considered as semi-infinite. 

Infinite elements are used to simulate the semi-infinite body. Figure 2 shows the finite 

element mesh generated by using CASTEM. The definition of the geometrical parameters 

shown in Fig. 2 can also be found in Table 1. 

 

As shown in Fig. 2, there is an arc with the radius of
a

R  at the bottom of the borehole. The 

reason to introduce the arc is to avoid singularity, which implies an infinite stress. Moreover, 

it is a good representation of the reality. It is impossible to have a perfect right angle 

practically when a hole is drilled and a round trace of the tool on the machined part always 

exists. Further explanation of this assumption can be found in Section 3. Very fine meshes are 

generated around the corner of the bottom of the hole. Many simulation tests with different 

mesh densities have been carried out to guarantee that the final mesh used in the calculations 

is fine enough to obtain convergent numerical results. In the end, there are 122 four-node 

bilinear elements and 4349 three-node linear elements in the final model. 
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2.2. Material properties 

The piston is normally made of steel, which is assumed to be a homogeneous and isotropic 

material. We also assume that the piston stays in its elastic domain during the impact process. 

Thus we can choose the piston’s material data as Young’s modulus 200 pE GPa= , Poisson's 

ratio 0.3pν =  and density 37800 /p Kg mρ = . 

 

As this study does not consider any cracks in the rock, water will be confined within the 

borehole, and then transfer force and energy from the piston to the rock through deformation 

and not through flow. In this case, according to Wilson [6], the water can be modelled as an 

elastic, homogeneous and isotropic solid with theses material coefficients: Young’s modulus 

6207813 
w

E Pa= , Poisson's ratio 0.4995
w

ν = , and density 31000 /
w

Kg mρ = . Let’s remark 

that this material has the key properties for our present study: quasi-incompressibility 

( 0.5ν ≈ ) and correct pressure wave speed (
2

1500 /c m s
λ µ

ρ

+
= ≈ ). For further studies, 

when cracks will be introduced, an improved model will be used for water. 

 

In the current investigation, the rock in this simulation is simplified as an elastic, 

homogeneous and isotropic solid. In reality, rock, as a natural material, consists of crystal, 

grains, cementitious materials, voids, pores and flaws, see [7]. However, at the first stage of 

investigating this non-explosive rock breaking technology, our current objective is to 

understand and quantify the impact process. Considering the influence of the inhomogeneous 

microstructure of rock material will be our next task. On the other hand, because of the 

uncertainty of the microstructure and its inhomogeneity, the assumed isotropic rock in our 

model can be treated as a representative of the real material and the results from this 

assumption will still be practically useful, especially for companies which intend to develop 
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relevant universe equipments for this non-explosive technology. Furthermore, the possible 

plastic deformation of the rock is not taken into account in the present research, neither the 

creation nor the propagation of cracks, which will be our future study. Consequently, there are 

three parameters to describe the rock: Young’s modulus 
r

E , Poisson's ratio 
r

ν  and it's 

density 
r

ρ . 

 

2.3. Contact simulation 

As shown in Fig. 1 and Fig. 2(a), there are three pairs of contacts involved in the impact 

process, i.e., the contact between the piston and the water, the contact between the piston and 

the rock, and the contact between the water and the rock. We use the hard contact algorithm 

from ABAQUS without damping to simulate these contacts. The friction is also neglected in 

our simulation. Practically, the friction between water and piston or rock should be very low. 

Further study will be carried out after we obtain reliable friction value involved in the contact 

between piston and rock. 

 

2.5. Simulation 

The only initial condition in this problem is the initial velocity of the piston, which is an 

additional parameter of the problem. All the impact simulations were carried out by using 

ABAQUS/Explicit. The effect of the hydraulic impact is evaluated by the maximum principal 

stress in the rock. As an example of our finite element simulation results, Fig. 3 shows the 

distribution of the maximum principal stress magnitude in the structure at the instant when the 

shockwave arrives at the bottom of the hole. It clearly indicates that the largest maximum 

principal stress, the largest principal stress in short, occurs at the bottom of the hole. 

Irrespective of microstructures, cracks will possibly initiate at this position with this largest 

stress magnitude in the rock. Figure 4 shows the corresponding direction field of the 
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maximum principal stress at this local area in the rock. One can imagine, once cracks initiate, 

the highly pressurized water will penetrate into the cracks and drive the cracks to propagate, 

which will be the core of the investigation to understand the rock breaking in our future study. 

 

3. Dimensional analysis 

All the parameters involved in the simulation are listed in Table 1. Here, the radius of the 

piston is the same as the radius of the borehole. Dimensional analysis is a powerful method to 

systematically carry out parametrical study on a complicated problem involving many 

parameters, see examples [8-10]. This method is applied in the current investigation. The 

objective variable in our dimensional analysis is chosen as the largest principal stress in the 

rock, 
m

σ , during an impact process. The rock material can be roughly considered as brittle 

material. According to Coulomb’s criterion of maximum normal stress, the maximum 

principal stress will initiate cracks in the rock and lead to the fragmentation of rock mass. 

Generally, the largest principal stress is a function of all the parameters listed in Table 1, i.e., 

 ( )p p p p p w w w w h h a r r rL ,E , , ,V ,D ,E , , ,R ,D ,R ,E , ,
m

fσ ν ρ ν ρ ν ρ= . (1) 

 

According to the Buckingham Π -theorem [11] for dimensional analysis, the number of 

parameters can be reduced based on the number of fundamental dimensions presented in the 

physical problem by using dimensionless parameters. For this purpose, 
h

D , the depth of the 

hole, pρ , the density of the piston and pE , the Young modulus of the piston are chosen as the 

primary quantities that express all the fundamental dimensions of the physical problem (m, N, 

s). Therefore, the dimensionless function for the largest principal stress is 

 
p p w w w h a r r

1 p w r1/ 2 1/ 2

h p h p h h p

L V D E R R E
, , , , , , , , , , ,

D D D D

m

p p p p
E E E E

−

 
= Π   × 

σ ρ ρ
ν ν ν

ρ ρ ρ
. (2) 
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Among all the dimensionless parameters in Eq. (2), some values can be considered as 

unchanged in this physical problem. The piston is generally made from steel and water is 

normally used as the liquid in this technology. Therefore, the material data for the piston and 

the water can be treated as constant. Consequently, the following dimensionless parameters 

will be considered constant in our model: 

 0.3pν = , 0.4995
w

ν = , (3) 

 6

11

6207813
31 10

2 10

w

p

E

E
= = ×

×
, 

1000
0.128

7800

w

p

ρ

ρ
= = . (4) 

Therefore, the dimensionless function (2) can be simplified as 

 
p p w h a r r

2 r1/ 2 1/ 2

h p h h h p

L V D R R E
, , , , , , ,

D D D D

m

p p p
E E E

−

 
= Π   × 

σ ρ
ν

ρ ρ
. (5) 

After this dimensional analysis, the number of variables involved in the stress analysis has 

reduced from 15 in the original Eq. (1) to 8 in Eq. (5). 

 

Based on the understanding of this physical problem, the following limits of the domains for 

geometrical parameters are appropriated for this problem: 

 [ ]0.1;0.8
p

h

L

D
∈ , [ ]0.1;0.8w

h

D

D
∈ . (6) 

 [ ]0.01;0.5h

h

R

D
∈ , [ ]0.001;0.05a

h

R

D
∈ . (7) 

Referring to [12], the domains of the mechanical properties of different types of rocks are 

shown in Table 2. According to this table, after choosing 200 pE GPa=  and 

37800 /p Kg mρ = , one can define the domains for dimensionless variables linked to the rock 

material as follows: 
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 [ ]0.05;0.5r

p

E

E
∈ , [ ]0.1;0.35rν ∈ ,  [ ]0.25;0.4r

p

ρ

ρ
∈ . (8) 

According to Denisart et al. [5], the initial velocity of the piston can vary from 10 /m s  to 

200 /m s , which corresponds to the following domain of the dimensionless initial velocity: 

 [ ]p

1/ 2 1/ 2

p

V
0.0020;0.0395

p
E ρ −

∈
×

. (9) 

 

In our numerical simulations, the limits of some parameters domains have been adjusted due 

to numerical instability problem. The Poisson’s ratio of water is 0.4995, which is close to the 

value of 0.5 of imcompressible materials. Additionally, the water is highly confined in the 

borehole and exposed to a highly compressive load from the impact of the high speed piston. 

Due to these factors, the calculation can sometimes lead to numerical instability [13]. A 

unsuccessful numerical instability calulcation can be detected by observing large abnormally 

distorted and penetrated deformed meshes. To overcome this instablility problem, some 

values lower than the upper limit or higher than the lower limit of the domains defined in 

above Eqs (6-9) were chosen sometimes. In the following section, only the correct results 

from the stable calculations are reported. It is believed that the fitted laws in the restricted 

domains of study in the following section are valid in the entire domains defined in Eqs (6-9). 

 

4. Results and discussions 

4.1. Influence of rock properties 

4.1.1. Rock density 

The effect of rock density is considered first. Figure 5 shows the influence of the normalized 

rock density, /
r p

ρ ρ ,  on the normalized largest principal stress in the rock during the impact 

process, /
m p

Eσ . 
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We have considered the two limit values of the domains of all the dimensionless parameters 

in Eq. (5), one by one from Fig. 5(a) to Fig. 5(g), while fixing the values of all the others 

dimensionless parameters at the middle values of their domains, which are defined in Eqs (6-

9). For example, the two curves in Fig. 5(a) are obtained for / 0.17
p h

L D =  and / 0.58
p h

L D =  

respectively while fixing 0.19
r

v = , / 0.3
r P

E E = , / 0.026
a h

R D = , / 0.26
h h

R D = , 

/ 0.5
w h

D D =  and  1/ 2 1/ 2/( ) 0.013p p pV E
− =ρ . 

 

Figures 5(a-g) clearly indicate that the variation of the normalized largest principal stress 

/
m p

Eσ  due to the change of the normalized rock density /
r p

ρ ρ  from 0.25 to 0.4 in all the 

studied cases is negligibly small. Because all the studied cases have covered the domains of 

this physical problem, one can deduce that it is generally correct that the influence of the 

variation of rock density on the largest principal stress in the rock can be neglected. 

Consequently, the dimensionless rock density in Eq. (5) can be removed and the 

dimensionless stress function can be further simplified as 

 
p p w h a r

3 r1/ 2 1/ 2

h p h h h

L V D R R E
, , , , , ,

D D D D

m

p p p
E E E

−

 
= Π   × 

σ
ν

ρ
. (10) 

 

4.1.2. Rock Poisson’s ratio 

Figure 6 shows the numerical results of the normalized largest principal stress in the rock 

during the impact for different values of the Poisson's ratio of the rock. All the others 

dimensionless parameters in Eq. (10) are fixed at their middle values of their domains, and 

only the Poisson's ratio of the rock changes from one calculation to another. As shown in Fig. 

6, the normalized largest principal stress increases slightly with the increasing of the 

Poisson’s ratio of the rock. The set of the numerical data can be well fitted by the following 

exponential function: 
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 2.980.0043 0.0107m
r

pE
= + ×

σ
ν . (11) 

 

4.1.3. Rock Young’s modulus 

Figure 7 shows the variation of the normalized largest principal stress in the rock during the 

impact for different normalized values of the Young's modulus of the rock. Similar to Fig. 6,  

/
m p

Eσ  increases slightly with the increasing of /
r p

E E  from 0.1 to 0.5. The set of the 

numerical data is also fitted by an exponential function, which is shown with the thick curve 

in Fig. 7. 

 

4.2. Influence of borehole dimensions 

4.2.1. Borehole depth 

The depth of the borehole, 
h

D , is chosen as the primary length in the dimensional analysis. Its 

influence on the problem can be implicitly reflected in the parametric study of other 

dimensionless length parameters, such as the dimensionless piston length and the 

dimensionless water depth. But it is understandable that the depth of the borehole has no 

direct influence on the largest principal stress in the rock, and that is the reason to choose it as 

the primary length to normalize the other parameters. 

 

4.2.2. Borehole radius 

Figure 8 shows the influence of the normalized borehole radius /
h p

R D  on the normalized 

largest principal stress in the rock /
m p

Eσ  while other parameters are fixed at the middle 

values of their domains. It indicates that /
m p

Eσ  increases gradually with /
h p

R D . Bear in 

mind, the borehole radius is equal to the radius of the water column and the radius of the 
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piston. Increasing borehole radius means increasing the radius of the piston, and therefore, 

increasing the initial kinetic energy of the piston with fixed initial velocity. This influence in 

real value is very significant. 

 

It is interesting to plot the instantaneous average velocity and the instantaneous kinetic energy 

of the piston over the impacting time for several values of the dimensionless radius of the 

hole. Figures 9 and 10 show these results. In Fig. 9, at the beginning, the piston is moving 

down, that is why the average velocity is negative. Then its average velocity decreases, and at 

1/ 2 1/ 2 7
h p p

t
D Eρ − =

× ×
, the piston has zero averaged velocity. After that, the piston is coming 

up, so its average velocity is increasing. This point can also be followed in Fig. 10: the piston 

starts with its kinetic energy, which decreases until 1/ 2 1/ 2 7
h p p

t
D Eρ − =

× ×
 where it is null, 

and then increases because the piston is coming up. Additionally, from Fig. 9, the average 

velocity of the piston does not depend on the borehole radius, and from Fig. 10, the kinetic 

energy of the piston depends on the radius of the hole, which is obvious because the radius of 

the hole is also the radius of the piston and the initial kinetic energy strongly depends on the 

radius of the piston. However, its evolution is quite similar from one value to another, which 

is obviously linked to the fact that the average velocity is the same for all curves in Fig. 9. 

This can be explained by the fact that both the kinetic energy of the piston and the energy that 

is transmitted to the water depend on the radius of the piston in the same way: they both are 

proportional to the cross section area of the piston, i.e., the square of its radius. Then, if the 

piston has a larger radius, it will have more initial kinetic energy, but it will also transmit 

more energy to the water, so its kinetic energy will decrease faster. This remark is important, 

and as discussed below, the kinetic energy of the piston is a key factor to determine the largest 

principal stress in the rock. 
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To understand this, an impact process is discussed by following Fig. 11, which shows the 

maximum principal stress in the element that has the largest principal stress and the 

instantaneous average velocity of the piston versus impacting time for 0.0167
h h

R D = : 

 - The piston hits the water with its initial velocity at the beginning of the simulation, 

which starts the impact process. 

 - The created shockwave comes down in the water, and arrives at the bottom of the 

borehole at 1/ 2 1/ 2 2
h p p

t
D Eρ − =

× ×
. Here is the first peak in the stress curve, with 

31 10pE
−= ×σ . 

 - Then the shockwave climb back to the surface (the material behaviour of the water is 

very different from the others material behaviours, so the transmission of energy is low) and 

the stress at the bottom of the hole reduces because of the dispersion of energy. 

 - When the shockwave arrives at the surface at 1/ 2 1/ 2 4
h p p

t
D Eρ − =

× ×
, it is reflected 

and comes down again, but with more energy because the piston is still coming down. 

 - Thus, the second peak in the stress curve will be greater, with 31.7 10pE
−= ×σ  at 

1/ 2 1/ 2 6
h p p

t
D Eρ − =

× ×
. 

 - And when the shockwave climbs back and arrives at the surface for the second time, 

at 1/ 2 1/ 2 8
h p p

t
D Eρ − =

× ×
, the piston has no more velocity downward and is going up. 

 - So the shockwave comes down again with less energy, and the third peak in the 

stress curve will be smaller, with 31.6 10pE
−= ×σ  at 1/ 2 1/ 2 10

h p p

t
D Eρ − =

× ×
. 

It can be conclude that the largest principal stress appears in the rock when the shockwave 

arrives at the bottom of the hole the last time while the piston still having some velocity 
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downward. It indicates that the kinetic energy of the piston plays an important role in the 

determination of the largest principal stress. 

 

4.2.3. Arc radius at borehole bottom 

This parameter, the arc radius at the borehole bottom, as shown in Fig. 2, is introduced to 

avoid the problem of infinite stress at the corner and allow a better modelling of the geometry 

of the hole in a real situation. Obviously, it will have a substantial influence on the stress in 

the rock. Figure 12 shows its influence on the problem. The thick curve in Fig. 12 represents 

an exponential function to fit the numerical dots. The stress tends to infinity when the radius 

of the arc closes to zero, which is expected because of the problem of singularity when 

0 
a

R mm= . Practically, this parameter will never be equal to zero, and its value can be 

estimated from the documentation of the active part of the tool used to drill the hole, in 

addition to the consideration of the rock material, or from experimental tests. 

 

4.2.4. Water depth 

Figure 13 shows the influence of 
w

D  on the largest principal stress in the rock and on the time 

to reach this value, when all the other dimensionless parameters are fixed at the middle values 

of their domains. The largest principal stress decreases and that the time to reach that stress 

increases when the depth of water increases, as seen in Fig. 13. This conclusion can be 

explained by the fact that the deeper the water is, the more the energy can disperse from the 

water to the rock, and therefore, it results to a smaller largest principal stress in the rock at the 

bottom of the hole. This relationship depends on the distance travelled by the shockwave, and 

Fig. 13 indicates that the normalized stress curve consists of two linear parts with the corner 

at 0.35
w h

D D = . Furthermore, the slope of the normalized stress curve depends on the 

number of return trips that the shockwave has made before the largest principal stress is 
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reached and the change of the curve’s slope is linked to the discontinuity of the curve for the 

time to reach the largest stress, and is explained in detail below. 

 

The variation of the time to reach the maximum principal stress with the change of the water 

depth, shown in Figure 13, is due to the combination of two facts: 

 - when the depth of water increases, the time for the shockwave to travel from the 

surface of the water to the bottom of the hole increases too, so the time to reach the largest 

principal stress increases. 

 - and when the water becomes deep enough, the largest principal stress is not reached 

at the third time when the shockwave arrives at the bottom of the hole, but the second time. 

This can be followed in Fig. 14(a) and 14(b), which give the maximum principal stress in the 

element that has the largest principal stress in the rock and the kinetic energy of the piston 

versus times, respectively for 0.333
w h

D D =  and 0.417
w h

D D = , which are respectively 

around the corner of the stress curve and the dropping part of the time curve in Fig. 13. Figure 

14(a) shows that the largest principal stress is reached at the third time when the shockwave 

arrives at the bottom of the hole for 0.333
w h

D D =  and Fig. 14(b) shows it is reached at the 

second time for 0.417
w h

D D = . This is the reason for the time dropping between 

0.333
w h

D D =  and  0.417
w h

D D =  and the appearance of the corner of the stress curve in 

Fig. 13. 

 

Figure 13 indicates that reducing the water depth can increase the largest principal stress in 

the rock. In terms of the entire rock breaking technology, pressurized water is needed to drive 

crack propagation once cracks are initiated in the rock. Therefore, it is not recommended to 

increase the largest principal stress in the rock by reducing the water depth. 
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4.3. Influence of piston dimensions 

The radius of the piston is the same as 
h

R , the radius of the hole. Its influence has been 

studied in the previous subsection. 

 

4.3.1. Piston length 

Figure 15 shows that the normalized largest principal stress increases continuously with the 

increasing of the normalized piston length. The longer the piston is, the higher its initial 

energy is because of the fixed initial velocity. Therefore, the stress in the rock increases. Such 

an influence is significant. Figure 15 also shows that the time to reach the largest principal 

stress magnitude has an irregular relationship with the piston length. This can be explained by 

Fig. 16(a-c), which show the relationships between the normalized maximum principal stress 

in the element that has the largest value in the rock during the impact, the normalized kinetic 

energy of the piston and the normalized impacting time for different values of the normalized 

piston length, 0.1667p hL D =  in Fig. 16(a), 0.4167p hL D =  in Fig. 16(b), and 

0.5833p hL D =  in Fig. 16(c), while the other dimensionless parameters are fixed at the 

middle values of their domains. Figure 16(a) indicates that when the shockwave climbs back 

to the surface at the second time when the slope of the curve of the kinetic energy changes, at 

1/ 2 1/ 2 7.5
h p p

t
D Eρ − =

× ×
, the piston has no more velocity downward and is coming up (its 

kinetic energy has already been null), which means that all its energy has already been 

transferred to the structure, so the largest principal stress has already been reached, the second 

time when the shockwave arrives at the bottom of the hole ( 33.5 10m pE
−= ×σ  at 

1/ 2 1/ 2 6
h p p

t
D Eρ − =

× ×
). It is exactly the same process as in previous Subsection 4.2.2. In the 

Fig. 16(b), the impacting process is similar: the largest principal stress is also reached at the 
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second time when the shockwave arrives at the bottom of the hole, at 1/ 2 1/ 2 6
h p p

t
D Eρ − =

× ×
, 

but due to the higher impacting energy, the value of the normalized largest principal stress is 

larger, with 34.5 10m pEσ −= × . And Fig. 16(c) is for an even longer piston: the piston still 

have some downward velocity (its kinetic energy has not been null) when the shockwave 

returns at the surface for the second time at 1/ 2 1/ 2 7.5
h p p

t
D Eρ − =

× ×
. Therefore, the largest 

principal stress is reached at the third time when the shockwave arrives at the bottom of the 

hole: 35.3 10m pEσ −= ×  at 1/ 2 1/ 2 10
h p p

t
D Eρ − =

× ×
. This is the reason why the time to reach 

the largest principal stress is irregular as shown in Fig. 15. 

 

4.3.2. Piston’s initial velocity 

Figure 17 shows the variation of the normalized principal stress in the rock with the change of 

the normalized initial velocity of the piston. It clearly indicates that the normalized largest 

principal stress increases linearly with the normalized velocity and the variation rate is 

significant. 

 

4.3.3. Initial kinetic energy of the piston 

The influence of the dimensions of the piston and its initial velocity on the largest principal 

stress in the rock have been investigated. We will now try to understand the global influence 

of its initial kinetic energy, which embrace all these parameters: 

 2 21

2
p p p p p

K R L Vρ π= × × × × × . (12) 

Figure 18 shows the evolution of the normalized largest principal stress in the rock during the 

impact with respect to the normalized initial kinetic energy of the piston. The initial kinetic 

energy is changed by three approaches separately, i.e., changing the piston length, changing 
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the piston radius and changing the initial velocity of the piston, while keeping the other 

parameters fixed at the middle values of their domains. Numerical results from the three 

approaches are depicted by three curves in Fig. 18. All these curves indicate that increasing 

the initial kinetic energy can increase the largest principal stress in the rock. For the purpose 

of increasing the largest principal stress in the rock over 800 MPa  for 200 pE GPa=  through 

increasing the initial kinetic energy, Fig. 18 indicates that the most effective way is to 

increase the piston’s initial velocity. 

 

5. Conclusions 

The hydraulic impact problem of a non-explosive rock breaking technology has been studied. 

Dimensional analysis and finite element method have been applied to systematically 

investigate the influence of all the parameters involved in the impact process, which includes 

the geometrical parameters and the properties of rock, piston and water. Major conclusions 

from our investigation are summarized below: 

 - The influences of rock’s material properties on the largest principal stress in the rock 

are small, which implies a good adaptability of the method for different rock materials. 

 - The shape of the bottom of the hole has a significant impact on the problem. 

 - The largest principal stress in the rock decreases if the depth of water is increased. 

 - Increasing the initial kinetic energy of the piston has a significant influence on the 

problem: it implies an increase of the largest principal stress in the rock and a variation of the 

time to reach that value. 

 - The best way to increase the largest principal stress in the rock by increasing the 

initial kinetic energy of the piston is to increase its initial velocity. 
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Table 1. List of all the parameters involved in the impact simulation 

Piston Water Rock Borehole 

pE : Young’s modulus 
w

E : Young’s modulus 
r

E : Young’s modulus 
h

R : radius 

pν : Poisson's ratio 
w

ν : Poisson's ratio 
r

ν : Poisson's ratio 
h

D : depth 

pρ : density 
w

ρ : density 
r

ρ : density 
a

R : arc radius 

pL : length 
w

D : depth   

pV : initial velocity    
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Table 2. Mechanical properties of typical rock materials 

Rock material Density (Kg / m
3
) Young modulus (GPa) Poisson’s ratio 

Granite 2500 - 2800 35 - 80 0.1 - 0.2  

Basalt 2400 - 2900 20 - 100 0.1 - 0.3 

Sandstone 2200 - 2700 10 - 40 0.2 - 0.3 

Dolerite 2900 - 3100 40 - 90 0.1 - 0.3 

Limestone 2000 - 2800 10 - 50 0.2 - 0.35 

Andesine 2500 - 2800 30 - 60 0.1 - 0.25 
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Fig. 1. Illustration of the hydraulic rock breaking technology. 
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Fig. 2(a) 
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Fig. 2(b) 

Fig. 2. Finite element mesh and relevant geometrical parameters: (a) global mesh; (b) local 

mesh around the bottom of the borehole. 



           27 

 

 

 

Fig. 3. Maximum principal stress field, in the structure. 
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Fig. 4. Direction field of the maximum principal stress, in the rock at the bottom of the hole. 
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Fig. 5(a) 
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Fig. 5(b) 
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Fig. 5(c) 
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Fig. 5(d) 
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Fig. 5(e) 
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Fig. 5(f) 
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Fig. 5. Influence of normalized rock density on the normalized largest principal stress in the 

rock for the cases (a) / 0.17
p h

L D =  and / 0.58
p h

L D = ; (b) 0.01
r

v =  and 0.35
r

v = ; (c) 

/ 0.1
r P

E E =  and / 0.5
r p

E E = ; (d) / 0.0017
a h

R D =  and / 0.05
a h

R D = ; (e) / 0.017
h h

R D =  

and / 0.5
h h

R D = ; (f) / 0.17
w h

D D =  and / 0.83
w h

D D = ; (g)  1/ 2 1/ 2/( ) 0.002p p pV E
− =ρ  and 

1/ 2 1/ 2/( ) 0.024p p pV E
− =ρ . 
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Fig. 6. Influence of Poisson's ratio of the rock on the normalized largest principal stress in the 

rock during the impact. 
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Fig. 7. Influence of normalized Young’s modulus of the rock on the normalized largest 

principal stress in the rock during the impact. 
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Fig. 8. Influence of normalized borehole radius on the normalized largest principal stress in 

the rock during the impact. 
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Fig. 9. Normalized average velocity of the piston versus normalized impacting time for 

several values of normalized borehole radius. 
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Fig. 10. Normalized kinetic energy of the piston versus normalized impacting time for several 

values of normalized borehole radius.
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Fig. 11. Normalized energy of the piston and the normalized maximum principal stress in the 

element that has the largest principal stress in the rock during the impact versus normalized 

impacting time, for 0.0167
h h

R D = . 
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Fig. 12. Influence of normalized arc radius at the bottom of the hole on the normalized largest 

principal stress in the rock during the impact. 
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Fig. 13. Influence of normalized water depth on the normalized largest principal stress in the 

rock during the impact and normalized impacting time to reach that stress. 
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Fig. 14(a) 
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Fig. 14(b) 

Fig. 14. Normalized kinetic energy of the piston and the normalized maximum principal 

stress in the element that has the largest principal stress in the rock during the impact versus 

normalized time for (a) 0.333
w h

D D =  and (b) 0.417
w h

D D = . 
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Fig. 15. Influence of normalized piston length on the normalized largest principal stress in the 

rock and the normalized time to reach that stress. 
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Fig. 16(a) 
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Fig. 16(b) 
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Fig. 16(c) 

Fig. 16. Normalized kinetic energy of the piston and normalized first principal stress in the 

element that has the largest principal stress in the rock during the impact versus normalized 

impacting time for (a) 0.1667p hL D = , (b) 0.4167p hL D =  and (c) 0.5833p hL D = . 
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Fig. 17. Influence of normalized initial velocity of the piston on the normalized largest 

principal stress in the rock during the impact. 
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Fig. 18. Influence of normalized initial kinetic energy of the piston on normalized largest 

principal stress in the rock during the impact applying different ways to increase the initial 

kinetic energy of the piston. 

 

 


