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Abstract

The High Cadence Transient Survey (HiTS) aims to discover and study transient objects with characteristic
timescales between hours and days, such as pulsating, eclipsing, and exploding stars. This survey represents a
unique laboratory to explore large etendue observations from cadences of about 0.1 days and test new
computational tools for the analysis of large data. This work follows a fully data science approach, from the raw
data to the analysis and classification of variable sources. We compile a catalog of ∼15 million object detections
and a catalog of ∼2.5 million light curves classified by variability. The typical depth of the survey is 24.2, 24.3,
24.1, and 23.8 in the u, g, r, and i bands, respectively. We classified all point-like nonmoving sources by first
extracting features from their light curves and then applying a random forest classifier. For the classification, we
used a training set constructed using a combination of cross-matched catalogs, visual inspection, transfer/active
learning, and data augmentation. The classification model consists of several random forest classifiers organized in
a hierarchical scheme. The classifier accuracy estimated on a test set is approximately 97%. In the unlabeled data,
3485 sources were classified as variables, of which 1321 were classified as periodic. Among the periodic classes,
we discovered with high confidence one δ Scuti, 39 eclipsing binaries, 48 rotational variables, and 90 RR Lyrae,
and for the nonperiodic classes, we discovered one cataclysmic variable, 630 QSOs, and one supernova candidate.
The first data release can be accessed in the project archive of HiTS (http://astro.cmm.uchile.cl/HiTS/).
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1. Introduction

Astronomy has entered the time domain era, with large
surveys that monitor the sky for several years aiming to study
time variations of astronomical sources. Surveys like MACHO
(Alcock et al. 1993), OGLE (Udalski et al. 1992), EROS
(Aubourg et al. 1993), and ASAS (Pojmanski 1997) have been
used to discover new classes of variable sources and reach a
better understanding of their properties and physical nature.
These projects were designed with a specific scientific goal,
such as the study of microlensing events as a signature of
massive compact halo objects, which could explain dark
matter, as in the case of MACHO (Cook et al. 1995), OGLE
(Udalski et al. 1994), and EROS (Grison et al. 1995). Not only
were microlensing events discovered, but a large sample of RR
Lyrae, eclipsing binaries, Cepheids, and long-period variables,
among others, were also discovered. This led to a better
calibration of period–luminosity relations and therefore more
accurate distance estimators in the local universe; see, e.g.,
Sesar et al. (2017).

Presently, there are surveys that are reaching deeper
observations, searching for variable stars in the outer halo of
our Galaxy and in dwarf satellite galaxies of the Milky Way
(MW). All of this is thanks to new astronomical facilities:

medium- to large-sized telescopes equipped with large field-of-
view instruments like the Dark Energy Camera (DECam;
Flaugher et al. 2015) at the 4 m Blanco telescope. The key
quantity that measures the survey capabilities of a telescope is
etendue, which is the product of mirror collecting area and field
of view. Current surveys are focused on transients and
variables in general, like the Catalina Surveys (Drake
et al. 2009), the La Silla-Quest Variable Survey (Hadjiyska
et al. 2012), the QUEST-La Silla AGN variability survey
(Cartier et al. 2015), the Intermediate/Palomar Transient
Factory (PTF/iPTF; Law et al. 2009), the SkyMapper Southern
Sky Survey (Keller et al. 2007), the Panoramic Survey
Telescope and Rapid Response System (PanSTARRS;
Chambers et al. 2016), the Korean Microlensing Telescope
Network (KMTNet; Kim et al. 2016), Gaia (Gaia Collaboration
et al. 2016b), the Hyper Suprime-Cam Subaru Strategic
Survey (Aihara et al. 2017), the Vista Variable in the Via
Lactea (VVV; Minniti et al. 2010), and others. All of these
current projects are delivering huge amounts of raw data that
need to be processed by taking advantage of the available
computational resources: high-performance computing (HPC)
to store, manage, and analyze data of the order of terabytes;
data visualization tools to analyze high-dimensional data;
machine-learning (ML) algorithms to perform automatic
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classifications; and more. These surveys are laboratories for
the next generation of time domain instruments, such as the
Large Synoptic Survey Telescope (LSST; LSST Science
Collaboration et al. 2009) and the Zwicky Transient Factory
(ZTF; Bellm 2014). The data streams will scale exponentially,
approximately following Moore’s law (data volume doubles
approximately every 2 yr); therefore, a more data science–
driven methodology must be implemented to extract the
astrophysical knowledge. In particular, the combination of
high cadence and large etendue observations represents a
perfect combination to search for transients and variable
sources with short characteristic timescales such as supernovae,
RR Lyrae, nearby asteroids, close eclipsing binaries, and new
types of transients.

The ML methods have demonstrated their capability to
provide solutions to various astronomical challenges. Important
tasks such as classification of galaxies and stars using either
photometric data (Ball et al. 2006; Vasconcellos et al. 2011;
Kim et al. 2015) or images (Kim & Brunner 2017), classifica-
tion of variable sources from time-series data (Richards
et al. 2012; Pichara & Protopapas 2013; Lochner et al. 2016;
Pichara et al. 2016), regression and model fitting algorithms
(Ball et al. 2007; Cavuoti et al. 2015; D’Isanto & Polsterer
2018), classification of transient events (Mahabal et al. 2008;
Bloom et al. 2012; du Buisson et al. 2015; Förster et al. 2016;
Wagstaff et al. 2016; Cabrera-Vives et al. 2017), and detection
of anomalous events such as new variability classes (Nun
et al. 2016) or unknown spectral signatures (Baron &
Poznanski 2017; Solarz et al. 2017; Reis et al. 2018) represent
some important examples. One of the advantages of using these
methods compared to traditional methods of classification is
when data complexity is high. The ML algorithms naturally
deal with complex scenarios, not only in terms of the data
volume but also in the dimensionality of the problem (e.g., size
of the feature space or resolution of the data). Nevertheless, not
everything is straightforward when ML algorithms are used.
One of the more common problems happens when supervised
learning is applied. In the supervised approach, a model is
trained with previously labeled data, and then the model
is applied to new unlabeled data. Therefore, a key aspect of ML
is having a representative training set of the problem. This
becomes difficult when new regimes of the parameter space are
explored. For instance, in the analysis of time series from
photometric data, this could correspond to deeper observations,
new filters, or the search for a new type of transient. Thus,
one of the main challenges for ML applied in the astronomical
domain is creating these training sets to be used with
upcoming data.

In this article, we present two science products: a public
catalog of detected point-like nonmoving sources and an
automatic classification of a catalog of variable stars in the
High Cadence Transient Survey (HiTS) database. HiTS was
designed to find and study the early phases of supernova events
using the DECam imager at the 4 m Blanco telescope at the
Cerro Tololo Inter-American Observatory (CTIO). We explain
the source extraction and calibration process using standard
calibrations and a comparison with public catalogs. We also
present a statistical analysis of these catalogs and their
structure. Finally, we follow an ML approach to automatically
classify light curves according to their variability. In this final
part, we address the difficult task of constructing training sets.
We explain the different strategies that were used following

standard astronomical procedures like catalog cross-matching
and visual inspection, modern ML techniques like active
learning (AL) and transfer learning (TL), and data augmenta-
tion techniques based on transformations to the existing data in
the labeled set.
The structure of this paper is as follows. In Section 2, the

survey is presented. In Section 3, the pipeline structure is
described: preprocessing, catalog creation, astrometric and
photometric calibrations, and database structure. In Section 4,
we perform an automatic classification of the detected objects
using light-curve features, training set construction, and
classifier validation and classification. In Section 5, the
classification results are presented, and we discuss the
encounter biases. Finally, in Section 6, the conclusions of this
work are presented.

2. Observations

The HiTS survey (Förster et al. 2016) consists of three
observational campaigns in 2013, 2014, and 2015 aiming to
study the early phase of supernova explosions. Due to this goal,
the survey was designed to have a relatively high cadence,
large field of view, and high limiting magnitude. This
combination of high cadence and large etendue offers a unique
opportunity to do science other than supernova studies, such as
studies of moving objects (Peña et al. 2018), studies of distant
RR Lyrae stars (Medina et al. 2017, 2018), and variability
studies in general.
In this work, we analyze data from all of the 2013, 2014, and

2015 observational campaigns. In 2013, we observed 120 deg2

in 40 fields during four consecutive nights, using an exposure
time of 173 s four times per night with a cadence of 2 hr in the
u band. In 2014, we observed 120 deg2 in 40 fields during five
consecutive nights, using an exposure time of 160 s four times
per night with a cadence of 2 hr in the g band. In 2015, we
observed 150 deg2 in 50 fields (with an overlap of 14 fields
with 2014) during six consecutive nights, using an exposure
time of 86 s five times per night with a cadence of 1.6 hr,
mostly in the g band but also including r- and i-band
observations. In 2014 and 2015, we also had imaging follow-
up observations after the main run following an approximately
logarithmic spacing in time. For more details of the survey, see
Förster et al. (2016).

3. Data Reduction

The preprocessing was performed using a modified version
of the DECam community pipeline (DCP; Valdes et al. 2014)
that performs electronic bias calibrations, cross-talk correc-
tions, saturation masking, bad-pixel masking and interpolation,
bias calibration, linearity correction, flat-field gain calibration,
fringe pattern subtraction, bleed trail, edge bleed masking, and
interpolation. Cosmic rays were removed using a modified
parallel version of CRBLASTER (Mighell 2010), which uses a
Laplacian filter (van Dokkum 2001). We removed the DECam
CCDs with known issues, N30, S30, and S7, in all fields.11 The
main difference between the data reduction process in this work
and that in Förster et al. (2016) is the use of images from
individual epochs instead of subtracted images.

11 http://www.ctio.noao.edu/noao/node/2630
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3.1. Source Extraction

Detection and extraction of sources were performed using
SExtractor (Bertin & Arnouts 2010) due to its speed, ease of
implementation, and ubiquitous use. A fine-tuning of the
parameters was done in order to go as deep as possible while
keeping a false-positive rate of detections in single-frame images
of less than 1.5% and to perform well in point-like sources. This
was done by comparing the single-frame catalogs with those
built from deeper stacked images, as explained in Section 3.4.
We report fixed-aperture photometry using aperture diameter
equal to multiples of the image quality (IQ), defined as half of
the empirical full width at half maximum (FWHM) of the image,
as well as Kron aperture photometry for extended sources,
although SExtractor parameters were not optimized for this
purpose. The SExtractor configuration parameters are presented
in Table 1.

3.2. Astrometric Calibrations

Output catalogs from SExtractor were astrometrically
calibrated against the Gaia DR1 catalog (Gaia Collaboration
et al. 2016a) using the latest version of the Software for
Calibrating Astrometry and Photometry (SCAMP v2.6;
Bertin 2006). The latest version of SCAMP takes into account
the full mosaic image from DECam to achieve the astrometric
solution. As a comparison, we perform cross-matching with the
Gaia and PanSTARRS Data Release 1 (PS1) catalogs. The rms
of the residuals is on the order of 0.08 and 0 05, respectively,
with 99% of the cross-matched sources within 0 5 of their
matching object.

3.3. Photometric Calibrations

We adopt two different photometric calibration strategies,
depending on whether there is information from the PS1
reference catalog in the same filter of our observations. If
available, we calibrate all epochs against PS1. If not available,
we calibrate all epochs relative to a reference epoch with good
observational conditions that are assumed to be photometric for
computing zero points (ZPs). We will call these calibration
strategies C1 and C2, respectively.

The problem of photometric calibrations can be considered
from the point of view of their relative and absolute calibration
accuracy. We have found that in those fields where PS1 is
available, C1 or C2 gives the same quality of relative

photometry. However, C1 gives significantly better absolute
photometric calibrations than C2. For 2014 and 2015, we
calibrate all epochs using C1, whereas for 2013, we use C2. In
what follows, both strategies are described in detail.
C1.—The absolute calibration against PS1 was performed by

fitting ZPs for every field, CCD, band, photometry type (Kron
and aperture), and epoch. We calculate the ZPs on cross-
matched objects between the PS1 and HiTS catalogs with
magnitudes between 16 and 21 for the g band and between 16
and 20 for the r and i bands. This is due to the difference in
depths and observing conditions encountered when observing
each band, namely airmasses or sky brightness. We applied a
σ-clipping filter of three times the median absolute deviation
around the median of the magnitude difference distribution to
remove outliers. The ZP values were calculated as the median
value of the magnitude difference for sources that remained
after filtering. We estimated uncertainties on ZPs using
bootstrapping to sample from the distribution of filtered
magnitude differences. We tested these results against a Monte
Carlo Markov chain (MCMC) method assuming a model with
the ZP and its error as parameters. The MCMC posterior
median error was, on average, 16% larger than the bootstrap
error. Thus, we report ZP uncertainties as 1.16 times the
bootstrap error. Finally, reported magnitudes for detected
sources are corrected by the ZP calculated as

m F t2.5 log 2.5 log ZP, 1exp= - + +( ) ( ) ( )

m
F

F

2.5

ln 10
ZP , 2

2
2d

d
d= +

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )

where m is the calculated AB magnitude, F is the SExtractor
measured flux in analog-to-digital units (ADUs), texp is the
exposure time of the observation, ZP is the ZP mentioned
above, δm is the calculated photometric uncertainty, δF is the
measured flux error (from Equation (7) as explained next) in
ADUs, and δZP is the uncertainty of the ZP.
C2.—We applied relative flux calibrations with respect to a

reference epoch, which was chosen to be the best in terms of
seeing for every field and CCD. We fitted a linear relation
between the fluxes of the same stars in the nonreference versus
reference epochs and applied a transformation to the fluxes in
the nonreference epochs: F F ai i flux¢ = , where Fi¢ is the
transformed flux, Fi is the original flux, and aflux is the slope
of the fitted relation. Then, all fluxes are converted to
magnitudes following the DECam photometric standard
calibration, ignoring color terms, since the relevant colors are
not available:
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where F′ is the transformed flux mentioned above in ADUs, X
is the observed airmass, A and K are the ZP and airmass
coefficients from the DES science verification archive,12 δF′ is
the transformed flux error in ADUs, and δA and δK are the
reported uncertainty of the ZP and airmass coefficients.

Table 1
SExtractor Input Parameters

Parameter Value

ANALYSIS_THRESH 1.5
BACK_SIZE 64 [pixels]
DETECT_MINAREA 3 [pixels]
DETECT_THRESH 1.3
GAIN 4.025 [electrons ADU–1]a

PHOT_AUTOPARAMS [2.5, 3.5]
PIXEL_SCALE 0.27 [arcsec pixel–1]a

SATUR_LEVEL 44,144 [ADUs]a

WEIGHT_GAIN YES
WEIGHT_TYPE MAP_VAPb

Notes.
a Read from image header.
b If available; if not, WEIGHT_GAIN is used.

12 https://cdcvs.fnal.gov/redmine/projects/des-sci-verification/wiki/
Standard_Star_Photometry
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In order to estimate the uncertainties δF of the measured
fluxes, we use corrected SExtractor errors. It is well known that
errors from SExtractor are generally underestimated (Labbé
et al. 2003; Gawiser et al. 2006). SExtractor estimates errors
using the following relation (Bertin & Arnouts 2010):

F n
F

GAIN
, 52

1
2

pixd s= + ( )

where σ1 is the typical fluctuation per pixel (mostly due to sky
Poisson noise), npix is the number of pixels within the aperture,
F is the measured flux, and GAIN is the effective gain used to
convert ADUs into detected photons. The first term represents
the sky fluctuations assuming uncorrelated noise between
pixels, and the second term is the Poisson variance or shot
noise from the source. One way to include the noise correlation
is to empirically study background fluctuations as a function of

the aperture size using randomly located circular apertures with
a range of aperture diameters (Gawiser et al. 2006). In Figure 1
(top panel), we show the distribution of flux measurements of
background-subtracted images for 1000 randomly located
apertures with different effective sizes N. Then, we model the
uncertainties to be proportional to the number of pixels of the
aperture to a given power β,

N , 6N 1s s a= b ( )

where N is the effective size of the aperture (N npix= ). In
Figure 1 (bottom panel), we show the empirical relation
(circles) and the extreme cases of no correlation and perfect
correlation that correspond to ∼N and ∼N2, respectively.
Finally, the uncertainties of the measured fluxes are given by

F n
F

GAIN
, 72

1
2 2

pixd s a= +b ( )

where α and β are given in Equation (6) and npix is the number
of pixels within the aperture. For the Kron aperture on
SExtractor, the area is given by the Kron best-fit ellipse. Then,
the number of pixels within the Kron aperture is given by
n r A B_IMAGE _IMAGEpix Kron

2p= ´ ´ , where rKron is the
Kron radius and A_IMAGE and B_IMAGE are the major and
minor axes of the ellipse, respectively. For fixed circular
apertures, the number of pixels is given by npix=π×
(k× IQ)2, where k is an integer.

3.4. Survey Depth

In order to calculate the completeness magnitude of our
catalogs, we created deep images combining the 10 best epochs
per campaign. Catalogs were extracted from stacked images
and then compared against catalogs from single-epoch images.
Assuming that at the depth of the single images, the stacked
images were complete (in terms of detectable sources), we
compared the magnitude distribution from both catalogs to
obtain the magnitude at a given completeness level. In the top
panel of Figure 2, the black and blue lines represent the

Figure 1. Top: distribution of measured flux on randomly located apertures for
three effective sizes N; the fluxes were measured on the background-subtracted
image. Bottom: background fluctuations as a function of aperture size. Circles
represent the empirical variation on images of field Blind15A_25, CCD N1; the
red dashed line represents the fitted function with α=0.850 and β=1.133.
The black dashed lines represent the extreme cases of independent noise from
pixel to pixel and correlated noise from fluctuations in background level that
leads to an rms proportional to N and N2.

Figure 2. Top: distribution of detected sources. The black histogram represents
all detections in the stack image, and the blue histogram represents sources
from the single-epoch catalog with a match between both. Bottom: ratio of both
distributions representing the detection recovery. The horizontal red line
represents the 50% level of completeness; this is achieved at ∼23.8 mag for a
typical field in the g band.
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distribution of detected sources in the stack and single-epoch
images, respectively. It is easy to see that at the bright end
(left), the ratio is consistent with 1 (see bottom panel), but
around 23 mag, this ratio decreases, reaching 50% at 23.8 mag.

In order to calculate the limiting magnitudes per field and
epoch, we measured the flux fluctuations of randomly located
empty apertures using the standard deviation of 1000 aperture
fluxes where no sources were detected. Then, assuming a
signal-to-noise ratio (S/N) of 5 for detection, we determined
the limiting magnitudes per field, CCD, and epoch as five times
the previous standard deviations.

Figure 3 shows (bottom panels) the evolution along epochs
of g-band limiting (solid black line) and completeness (dashed
blue line) magnitudes for observations during 2013, 2014, and
2015. The top panels show the evolution of the observed
airmass and measured FWHM in arcseconds. In all three years,
the limiting and completeness magnitudes follow the airmass
evolution within the night. Figure 3(c) shows an increase of the
measured FWHM between epochs 15 and 25; this is due to
observations during two cloudy nights having a severe impact
in the limiting magnitudes.

The rate of detections that are nonreal sources, i.e., the false-
positive rate of detections, was also derived comparing catalogs
from stacked and single-epoch images, which were found to be
at the level of 1% at magnitude 23.8 (only considering point-
like sources). Therefore, our catalogs are typically at least 99%
pure at the completeness magnitude.

In order to test the quality of our photometric errors, we
compared the flux standard deviation with the median photometric
uncertainty for every source. In Figure 4, we show the empirical
standard deviation versus the median estimated photometric
uncertainty. We found that the previous standard deviations are
of the same order as the estimated median errors (combining
SExtractor, pixel correlation, and ZP uncertainty). However, the
distribution of the ratio between the previous two quantities has a
median of about 1.3. An increased empirical standard deviation
could be due to several factors: the contribution of the more noisy
epochs due to varying observational conditions; the correction in
Equation (7), which does not take into account correlated noise
coming from the source; and the contribution of intrinsically
variable sources. Thus, the ratio between empirical standard
deviations and the estimated uncertainties is expected to be
greater than 1.

Further comparisons of HiTS against the PS1 photometric
catalogs are shown in Figure 5 for all three filters available in
the 2015 data. In the g band, the relation is close to the identity
with a small scatter of the order of 0.02 mag up to 21.5 mag.

Above 21.5 mag, where the HiTS catalog is 3 mag and PS1 is 2
mag below their completeness magnitudes, PS1 values tend to
be underestimated compared to the HiTS photometry. For the r
and i bands, the conclusions are similar, but the scatter is of the
order of 0.04 and 0.07 mag, respectively.

3.5. Catalogs and Database

In total, we obtained 1,980,107 detected sources in the u
band for 2013 and 5,389,028 sources in the g band for 2014.
For the 2015 observations, we obtained 5,117,233 sources in
the g band, 5,884,126 in the r band, and 4,572,003 in the i
band. Due to the overlap of 14 fields between the 2014 and
2015 observation campaigns, 1,190,008 sources have been
cross-matched using a radius of 0.5 arcsec between both
catalogs. The number of single-epoch detections for all three
campaigns is about 100 million. The structure of this catalog is
similar to the structure used in PS1. The column description
of the catalogs is presented in Appendix A (see Table 5).
Public catalogs are available and accessible in the project
archive of HiTS13; DR1 has also been archived on Zenodo
(doi:10.5281/zenodo.1410651 ). The database is available as
compressed tarball files for the entire HiTS survey and also
separated by fields. In the future, we will test the possibility of
using a dedicated time-series database (e.g., influxDB14) to
store and access the data.

4. Automatic Classification

The typical procedure to perform a supervised automatic
classification using ML algorithms is the following. First, build
a labeled set with the desired classes in a subset of the entire
database; this can be accomplished by running a cross-match
with available public databases. Then, train a supervised
classifier with a subset of the labeled set (the training set).
Then, the model is validated with a subset of the labeled set that
was not used to train (the test set). Finally, a prediction is made
on the unlabeled data. In our case, we use a feature engineering
approach, i.e., to represent each time series as a user-defined
feature vector and with labels corresponding to variability
classes of the astronomical sources.
We clean the detection catalog to remove extended sources,

and we filter by FWHM, Ellipticity, FluxRadius, and
KronRadius to select point-like sources. Afterward, we filter
out saturated sources at the bright end of the magnitude

Figure 3. Panels (a), (b), and (c) refer to observation campaigns during 2013, 2014, and 2015, respectively. Evolution of the observed airmass (dashed blue line) and
measured FWHM (solid black line) in arcseconds are given in the top panel. Derived completeness and limiting magnitude are shown in the bottom panel, both as a
function of epoch number.

13 http://astro.cmm.uchile.cl/HiTS/
14 https://www.influxdata.com/
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distribution. Finally, we select all sources with more than 15
detections to build their light curves and perform the automatic
classification by variability. We end up with 2,536,100 point-
like sources after the selection mentioned above for the 2014
and 2015 data.

4.1. Feature Extraction

We extract features using the feature analysis for time series
(FATS; Nun et al. 2015). Some of these features are mean,
standard deviation, amplitude, period of the Lomb–Scargle
periodogram maximum, false-alarm probability of the period,
mean variance, and median absolute deviation. The full list of
features is shown in Table 8 in Appendix B. Note that the set of
features has already been used in other works (Mackenzie et al.
2016; Nun et al. 2016; Pichara et al. 2016). We also added
periods calculated using both the generalized Lomb–Scargle
technique (GLS; Zechmeister & Kürster 2009) and correntropy
kernel periodogram (CKP; Huijse et al. 2012), as well as color
indices calculated when observations were available (g, r, and i
bands).

4.2. Labeled Set

In order to build a labeled subset with the astronomical
variability classes expected to appear in our survey, we
considered three approaches: cross-match with public catalogs,
visual inspection, and TL combined with AL.

The first and more standard approach is to run a cross-match
with public catalogs of variable sources. However, due to the
uniqueness of our survey in terms of cadence, depth, and
survey area, other surveys tend to have a small overlap with
HiTS. Surveys such as MACHO, EROS, and OGLE do not
overlap spatially with HiTS. We found overlap with the Sloan
Digital Sky Survey Data Release 9 (SDSS DR9; Ahn
et al. 2012), the General Catalog of Variable Sources (GCVS;
Samus et al. 2009), the Catalina Sky Survey Data Release 1
(CSDR1; Drake et al. 2014), and the International Variable Star
Index (VSX; Watson 2006). We also included a comparison
with parallel searches for RR Lyrae and supernovae on the

same data (Förster et al. 2016; Medina et al. 2018,
respectively). It is important to notice that the low number of
positive cross-matched sources (about 30) between our light
curves and the supernovae detected by Förster et al. (about 120
detections) is due to the methodology used. We detect sources
with SExtractor in the direct images, while Förster et al. used
image differences that perform better near the core of the
galaxy host. The classes and number of cross-matched sources
from each different survey are summarized in Table 2.
The second approach consists of a visual inspection of light

curves from sources that have a low false-alarm probability
obtained from their Lomb–Scargle periodogram maximum
(i.e., the largest period_fit value given by FATS). We also
visualized the light curves of sources with very low variability
(std, mean variance, and variability index given by FATS) in
order to add them to the nonvariables class of the training set.
After the first two approaches, we end up with 11 classes of

variability: nonvariables (NV), quasars (QSO), cataclysmic
variables (CV), RR Lyrae (RRLYR), eclipsing binaries
(EB), miscellaneous variable stars (MISC), supernovae (SNe),

Figure 4. Standard deviation of detections vs. median photometric uncertainty,
color-coded by median magnitude for a typical field during the 2015 g band.
The diagonal line is the identity representing variations in the photometry
similar to its error; significant departures from the identity are due to intrinsic
variability and insufficient correction by pixel correlations.

Figure 5. HiTS against PS1 photometry for the g, r, and i bands (top, middle,
and bottom panels, respectively). The scatter around the identity for relatively
bright sources, up to 21.5, is of the order of 0.02, 0.04, and 0.07 for the g, r,
and i bands. Beyond 21.5 mag, the scatter from the identity increase, we claim
that PS1 values tend to be underestimated compared to HiTS photometry,
mainly due to the single-epoch depth of both surveys, where HiTS reaches the
completeness magnitude at ∼24 and PS1 at ∼23.
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long-period variables (LPV), rotational variables (RotVar), ZZ
Ceti variables (ZZ), and δ Scuti variable stars (DSCT).

Due to the small number of instances for some classes after
the cross-match, which leads to an unbalanced training set, we
tried the third approach of TL combined with AL. Here TL
(Qiang Yang 2009) is a method to learn from a training data set
that exists in a different domain, the source domain, to train a
classifier that will be applied in a different domain, the target
domain. For instance, to train a classifier based on V-band light
curves that will be applied to g-band light curves. This is
particularly useful when a large training set exists in the source
domain, but no equivalent set exists in the target domain. Here
AL (Settles 2012) is an iterative and interactive process in
which expert input is required to classify objects where the
classification cannot be done with a high level of confidence
and, with this information, improve the classifier. This process
is done iteratively until certain criteria are met, e.g., the test set
accuracy or the amount of sources per class are satisfactory.

There are already compiled training sets that can be used for
the classification of variable stars, such as MACHO, OGLE,
and EROS. A TL approach is required to train a classifier for
HiTS using these data sets because these surveys were
observed with a different band, cadence, and depth and in a
different part of the sky (the source domain for TL). A simple
way to transfer the labeled sources is to calculate the same
features in both the source and target domain and compare their
distributions. Then, a simple transformation is found, e.g.,
scaling and translation, that forces both distributions to be
similar. The main problem with this approach is that finding the
transformation can be difficult, especially when the distribu-
tions of features are very dissimilar. This is our case. The
sampling function of HiTS is very different from those of
MACHO. MACHO was observed in the BVR filters, but HiTS
was observed in the ugri filters; MACHO reached a depth of
∼20 mag in the B band, while the HiTS depth was ∼24.5 mag
in the g band; finally, the cadence of MACHO was on the order
of days (even weeks) during 5 yr, but that of HiTS was on the
order of hours during about a week. The latter is probably the
most important difference between these surveys. Therefore, it
was not possible to find a simple transformation between
both spaces.

We tested a basic combination of TL with AL. A simple
transformation was applied to the feature distribution of
MACHO to match HiTS, and then a random forest (RF)
classifier (see next subsection for a description of the method)
was trained using the transformed feature values of MACHO.
The hyperparameters of the model were tuned following a
cross-validation approach15 within the MACHO training set.
For this and further tests, we set a stratified sixfold cross-
validator to preserve class unbalance. When classifiers without
TL and with our simple transformation were tested on the
current HiTS labeled data set (using only labeled sources from
cross-matching in Table 2), we found that in the first case, the
accuracy was ∼5%, and in the second case, the accuracy
improved to ∼15%. None of these classifiers reached a
satisfactory level of accuracy. But, predicting in unlabeled
HiTS data, we were able to confirm the classification of those
objects with the highest classification confidence via visual
inspection done by experts and to then add them to the labeled
set (basic AL procedure). We performed this method with only
one iteration, since most of the newly labeled objects belonged
to the already well-populated classes. In those cases, the new
objects were not added to the labeled set. The EB sources
provided by this method were later confirmed via post-cross-
matching with the same catalogs presented above. The
contribution of this mixture of TL and AL to the training set
is shown in Table 2.
The total amount of items per class shown in Table 2 is too

small for some classes—for instance, one and five items for
DSCT and RotVar, respectively. In these cases, the classifica-
tion model does not create a good representation of the classes,
leading to unreliable results when cross-validation techniques
are used.
In order to compensate the less-populated classes, we follow

a data augmentation approach (see, e.g., Dieleman et al. 2015).
We use known objects in the periodic classes to create synthetic
light curves from them by applying basic transformations (i.e.,
scaling, noise addition, and phase shifting). To create these

Table 2
Summary of Number of Objects per Class from Different Approaches to Building the Labeled Set

Source NV QSO CV RRLYR EB MISC SNe LPV RotVar ZZ DSCT Total

SDSS DR9 L 3495 85 L L L L L L L L 3580
GCVS L L 1 22 1 L L L L L L 24
CSS L L 1 26 91 L L 1 5 L L 124
VSX L L 11 126 105 7 L 1 5 2 1 258
Medina et al. (2018) L L L 60 L L L L L L L 60
Förster et al. (2016) L L L L L L 29 L L L L 29
Visual inspection 5000 L L L L L L L L L L 5000
TL and AL L L L L 10a L L L L L L 10

Totalb 5000 3495 94 177 110 7 29 1 5 2 1 8921

Data augmentation 5000 L L 100 200 L L L 179 L 166 5645
Labeled setc 10,000 3495 94 277 310 L 29 L 184 L 167 14,566

Notes. Variability classes are nonvariable (NV), quasar (QSO), cataclysmic variable (CV), RR Lyrae (RRLYR), eclipsing binary (EB), miscellaneous variable
(MISC), supernovae (SNe), long-period variable (LPV), rotational variable (RotVar), ZZ Ceti variable (ZZ), and δ Scuti variable (DSCT).
a Later confirmed by cross-match.
b Total values per class might not represent the direct addition of column values; this is due to some objects being present in different catalogs.
c Represents the actual total number of sources per class used during the training and testing tasks.

15 Technique used to measure the model errors where the data are partitioned
into train and test sets and the model is trained and tested several times, each
one with a different combination of train/test sets. Finally, the error is
computed from the statistics of all the trained models (Ivezić et al. 2014).
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synthetic light curves, we follow these steps. We model the
observed folded light curves using a Gaussian process (GP;
Rasmussen & Williams 2005), which is a nonparametric
method to model the data. We use the GP regression
implemented in scikit-learn16 with a periodic ExpSineSquare17

kernel; then, we sample from this model following the HiTS
observing strategy. At this step, we also apply a transformation
in the time coordinate to simulate different periods consistent
with the distribution of periods in each class. We remove data
points in the dim end of the magnitude distribution to emulate
the typical fraction of missed data in the light curves. Mean
values are scaled to the HiTS empirical magnitude distribution,
adding heteroscedastic noise using the empirical distributions
of errors given a magnitude bin. Finally, features are calculated,
as was done for real light curves.

Following this method, we were able to increase the
population for the RRLYR, EB, DSCT, and RotVar classes
(see Table 2). For the transient class, it is more difficult to
perform data augmentation because applying time shifts
requires a more difficult interpolation and may require
extrapolation. For the nonperiodic CV and MISC classes of
variable sources, it is also difficult to perform data augmenta-
tion. The CVs exhibit quiescence and outburst behavior in a
nonperiodic fashion according to their accretion rate with
timescales of weeks to years plus timescales of hours due to
orbital variations. The MISC class is a heterogeneous family of
variable stars and thus difficult to characterize; therefore, we

eliminated this class from the training set. For periodic ZZ
variables, which are fast-pulsating stars with periods from
seconds to dozens of minutes, even the fast cadence of HiTS is
not fast enough for their proper characterization. Therefore, the
ZZ class was also removed from the training set.
The final training set contains the classes and numbers listed

in the last row of Table 2. The catalog with sources and classes
used for the classification task is available in the project archive
of HiTS (see footnote 13), and the column description of the
catalog is presented in Appendix A (see Table 6). Examples of
periodic and nonperiodic light curves are shown in Figure 6.

4.3. Model Training and Testing

We follow a hierarchical classification scheme using an RF
classifier (Breiman 2001). Briefly, RF consists of a collection
of single decision-tree classifiers that partition the feature space
in a hierarchical fashion, where each tree is trained with a
random selection of objects and features, and the final
classification is the average outcome of each individual tree.
In astronomy, RF has been extensively and successfully used to
classify sources (Pichara & Protopapas 2013; Kim et al. 2014;
Förster et al. 2016; Yuan et al. 2017). For this work, we use the
scikit-learn18 implementation of RF. We set the number of
estimators (the number of trees) per classifier and the maximum
depth of the trees (the maximum path length at which nodes are
no longer expanded), minimizing the out-of-bag error at the
training phase (which is the predicted error on a bootstrap
aggregation). The remaining hyperparameters of the classifier

Figure 6. (a) Examples of periodic light curves for objects in the training sample. Light curves are phase folded using period calculation from GLS. (b) Examples of
nonperiodic light curves for objects in the training sample.

16 http://scikit-learn.org/stable/modules/classes.html#module-sklearn.
gaussian_process
17 Defined as k x x, exp x x p

l

2 sin2

2¢ = - p - ¢( )( ) ( ∣ ∣ ) , where p is the period of the
function and l is the length scale of the function.

18 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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(such as the split criteria, number of features to learn in each
tree, and minimum number of samples per leaf) were set as the
best F1-score19 value from the cross-validation process. Class
imbalance was taken into account, weighting each class in the
training set by initializing the class weight hyperparameter as
“balanced_subsample.”We fed all the features listed in Table 8
to the RF model. Each classifier in the hierarchical scheme was
tested using an unseen set—the test set—that represented one-
third (∼4500) of the full labeled set while maintaining the
imbalance of classes. This set was composed of real sources,
with the exception of the RotVar and DSCT classes, due to the
small number of real objects.

The hierarchical classification allows us a better understanding
of the possible contaminants of each class. For the hierarchical
scheme, we divide the classification into two binary layers and
one final multiclass layer. The first layer consists of a binary
variable/nonvariable classification. The NV class was set as a
nonvariable class during this step. The QSOs were removed from
this layer. The reason for this is that short-term variability (with
timescales of hours) is not a well-constrained property of QSOs.
Other than blazars, which are well-known fast variables, small
samples of a few dozen “normal” QSOs show short-term
variability in about∼10%–30% of objects but with amplitudes of
∼3%–10% (Stalin et al. 2004; Gupta & Joshi 2005). The poorly
known properties of this variability could make classification at
this stage less reliable.

A confusion matrix presenting our results is shown in
Figure 7, where it is easy to see that variables are in general
well classified and false positives are statistically zero; i.e.,
we achieved a high purity. The F1 score on the test set is
99% ±0.1% (see Table 3 for peer class score values).

Next, for variable candidates, we separate the periodic and
nonperiodic classes. Here the periodic classes are RRLYR, EB,
LPV, RotVar, and DSCT, while the nonperiodic classes are
CV, SNe, and QSO. Only QSOs that were classified as variable
with the variable/nonvariable classifier (described above) are
included in this layer as nonperiodic sources; this is 177 out of

3495. We remove all true periodic variables with bad period
estimations (i.e., period_fit> 0.5) from the training set. The
main reason to do this is the presence of periods longer than
weeks in the training set, which are not possible to recover with
the HiTS observational time span. This only reduces the
number of periodics by 68 sources. The F1 score after doing
this is 98% ±0.1%, and the corresponding confusion matrix
is shown in Figure 8. The false-positive rate is around 4%, and
the classifier misses only 1% of the periodic sources.
For the final layer, a multiclass classification is applied for

each periodic and nonperiodic subset. Within the nonperiodic
set, the classifier was trained with three classes (QSO, CV, and
SNe), and for the periodic set, it was trained with four classes
(RRLYR, EB, RotVar, and DSCT).
For the periodic set classifier, the injection of synthetic light

curves significantly improves the performance of the classifier
for the RotVar and DSCT classes compared with a classifier
trained only with real data: from 14% to 94% and from 0% to
97% for the RotVar and DSCT classes, respectively. However,
if we test only with real sources, we recover four out of five
sources in the RotVar class (80% recall) and one out of one

Figure 7. Confusion matrix from testing results for variable/nonvariable
classification. True Label represent the ground truth, and Predicted Label is the
outcome of the RF classifier.

Table 3
Summary of Precision, Recall, and F1 Scores for Every Step in the Hierarchical

Classification as Measured in the Test Set

Variability Class Precision Recall F1 Score

Variable (basic) 0.92 0.97 0.95
Nonvariable (basic) 1 0.99 0.99

Variable (RF) 1 0.98 0.99
Nonvariable (RF) 1 1 1

Periodic 0.99 0.99 0.99
Nonperiodic 0.97 0.96 0.96

DSCT 0.96 0.96 0.96
EB 0.86 0.91 0.88
RotVar 0.94 0.94 0.94
RRLYR 0.98 0.93 0.95

CV 0.88 0.96 0.92
QSO 0.89 0.82 0.86
SNe 0.80 0.67 0.73

Figure 8. Confusion matrix from testing results for periodic/nonperiodic
classification. Similar to Figure 7.

19 The F1 score is the weighted average of the precision and recall, i.e.,
F1 2 P R

P R
= *

+
, where P

T

T F

p

p p
=

+
is the precision,

T

T F

p

p n+
is the recall, and Tp and

Fp (Tn and Fn) are the numbers of true and false positives (negatives).
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source in the DSCT class. The EB and RRLYR classes did not
show significant improvement after the injection of synthetic
light curves. The confusion matrix shown in Figure 9 presents
the results of the test set for this layer, where it is possible to
notice that, in general, misclassification is below 5% in all
classes. The weighted F1 score is 93%±2%.

For the nonperiodic set, the classes are QSO, CV, and SNe.
The weighted F1 score is 88%±3%. Figure 10 shows
the confusion matrix for this classification model. Here the
misclassification is higher, given the short time span of the
survey. In many cases, CVs and QSOs are either observed
during their quiescent state or have longer characteristic
timescales of variability.

One of the advantages of using RF as a classifier model is
that RF naturally provides the importance of each feature as a
score. The feature importance reflects which features derived
from the light curves separate better in each class. The more
informative a feature is, the higher is its rank. Feature
importance ranks for the top 10 descriptors are shown in
Appendix B (see Table 9) for the four classifiers described
above. For each classifier, the more informative features are
related to the type of classification that is done. In the case of
the variable/nonvariable classification, Period_fit and Psi_eta
(variability index for unevenly sampled data) are the most
important features, both characterizing the variability in the
data. For the periodic/nonperiodic classification, Period_fit and
CAR_sigma are the top two features, the former representing
the false-alarm probability of the calculated period and the
latter describing the variability dispersion of nonperiodic
signals. When periodic sources are separated within the four
classes present in our training set, the value of the period
(PeriodLS) is the top-ranked discriminator. In the case of
the nonperiodic classes, the linear trend (LinearTrend)
and characteristic length of the autocorrelation function
(Autocor_length) are the most important features.

Table 3 summarizes the precision, recall, and F1 scores for
all of the steps in the hierarchical classification described
above. We compared our variable/nonvariable classifier to a
classical classification of variability from the standard devia-
tion–mean plane. For this, we classified as variables all sources

with a standard deviation above three times the median
standard deviation value for that bin of magnitude. From this,
we were able to separate variables from nonvariables in our
data set. We compared the precision, recall, and F1 scores of
this crude classification (see rows labeled “basic” in Table 3)
against our RF classifier. The RF classifier performed better
separating variables. This is because the model uses more
information from the set of feature values (see Table 9 for
feature importance derived from the RF classifier) and finds
more complex ways to split the data. This demonstrated one of
the advantages of using ML algorithms to perform classifica-
tion of complex data sets.
The final RF classifiers at each step of the hierarchical

classification were trained using the full data set (after cleaning
and with the augmented data) with the same initialization
conditions as those used during model testing.

5. Results

The first result of this work is a catalog of detected sources
for 348 deg2 and a magnitude range between 17 and 24.5 mag
in the u, g, r, and i bands. The catalogs for each observation
campaign are astrometrically and photometrically corrected and
contain morphology information provided by the extraction
process.
A second result is the creation of a training set via cross-

matching, AL, TL, and data augmentation. From the latter
strategy, we are able to fill the entire magnitude range of our
survey. The final result is a catalog of light curves covering
270 deg2 observed during the 2014 and 2015 campaigns. The
unlabeled data set of 2,536,100 sources was classified
following the classification scheme previously described. They
were first classified as variable/nonvariable; then, the variable
candidates were separated into periodic/nonperiodic; and
finally, periodic and nonperiodic candidates were classified in
their respective subclasses.
Classification probabilities from RF are obtained for each

layer of the scheme. Table 4 shows the number of predicted
sources per variability class. Number counts are shown by
probability threshold, i.e., probabilities above 90%, 80%, 70%,
60%, and 50%. To understand the numbers presented in
Table 4, we describe how unlabeled data were classified. First,

Figure 9. Confusion matrix from testing results for periodic subclass
classification. Similar to Figure 7.

Figure 10. Confusion matrix from testing results for nonperiodic subclass
classification. Similar to Figure 7.
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the variable/nonvariable model classified variable sources,
giving a probability where 1 is variable and 0 in nonvariable.
Here sources with a probability greater than 0.5 are classified as
variables (3485). Then, this subsample follows the periodic/
nonperiodic classifier, again with probabilities between 0 and 1,
where the latter is a periodic signal and sources with a
probability greater than 0.5 are classified as periodic, adding
the number of periodic and nonperiodic sources with a
probability >50% to give us the number of variables. Then,
the periodic sources go into the periodic classifier, which
separates between DSCT, EB, RRLYR, and RotVar, and the
final class is defined by the one with a higher probability from
the classifier; the same applies to the nonperiodic sources that
go into the nonperiodic classifier, in which they were separated
between CV, QSO, and SNe. Therefore, the numbers presented
in the binary periodic/nonperiodic classification add and match
the number of variables only in the >50% column, but not for
higher probability thresholds. For the multiclass classifiers, the
addition of numbers is not direct for obvious reasons.

A detailed description of the candidate catalog is presented
in Appendix A, Table 7. The full catalog contains the outcome
probabilities for each layer of the hierarchical classification
scheme, and it is available along with the source catalog.

In the variable/nonvariable layer of the hierarchical model,
the model classified a small fraction of the sources as variable.
The classifier model found 61 RRLYR, eight RotVar, and
six EB with high confidence, above 90%. As a comparison, it is
estimated that there is one RR Lyrae per square degree in the
MW halo. From there, the expected number of RR Lyrae in
HiTS is roughly 300. Adding the training and candidate RR
Lyrae, this is in agreement with the estimations. On the other
hand, from the outcome of the nonperiodic layer, 160 sources
are classified as variable QSO candidates with probabilities
above 90%. Dedicated works of intranight QSO variability
have estimated the fraction of variable sources as 10%–30%
(Stalin et al. 2004; Gupta & Joshi 2005) with amplitudes of 3%
and 10%, respectively. Surface density estimates give ∼20 and
∼100 QSOs per square degree at the HiTS g-band magnitudes
of 20 and 22 (Beck-Winchatz & Anderson 2007), at which our
photometry is sensitive to variations of 3% and 10%,
respectively. Therefore, a total number of ∼5000 or ∼20,000
rapidly varying QSOs are expected in HiTS. Hence, we find a
low ratio of variable QSOs (from the training and candidate
sets) to the total expected number of QSOs (∼7% and ∼1.5%).

The smaller percentage of variable QSOs might be due to our
slow cadence and the nontargeted nature of the data compared
to the dedicated works mentioned above. We will address these
intranight variable QSOs in a forthcoming paper.

5.1. Classification Biases

The observational strategy used during the HiTS observing
campaigns limits our completeness. The most important factors
are the magnitude range and the characteristic timescale
covered by the survey. The former is represented by the
saturation limit of the images that set a lower limit of ∼15 mag
in the g band, and the upper limit is set by the survey depth
calculated as 24.3 mag in the g band. For comparison, RR
Lyrae at this limiting magnitude will be at 500 kpc. This is
further away than the MW virial radius (∼300 kpc; Bahé et al.
2017), and therefore it should be complete. More generally,
however, both object detection and variability candidate
catalogs are restricted to this magnitude range. The character-
istic timescale of variable sources studied by this survey is set
by the cadence and the maximum time interval of the
observations. The HiTS time span covers 5/6 consecutive
nights; therefore, characteristic times greater than weeks are not
available. On the other hand, the cadence of HiTS is 2/1.6 hr,
making the study of timescales of minutes or seconds very
challenging for periodic sources and impossible for fast
transients.
Another set of biases are introduced by the training set at the

classification stage. In the ideal case, the training set should
represent the entire parameter space of the unlabeled data, and
the number counts per class should represent the true
distribution of classes and contain all possible subclasses.
Clearly, this is not the case in astronomical studies, where
neither all the variability classes nor the number distributions
are known. In our case, the training set came from cross-
matching, AL and TL, and the data augmentation technique. It
contains eight variability classes that are highly unbalanced,
and they do not necessarily represent the true distribution of
variable sources. Additionally, parameters like magnitude
distribution per class do not entirely represent the global
distribution of sources in the unlabeled data. We minimize
these effects by injecting synthetic light curves.

Table 4
Number of Predicted Sources per Variability Class, Variable, and Periodic with Probability above 90%, 80%, 70%, 60%, and 50%

Class >90% >80% >70% >60% >50%

Variable 498 822 1361 2130 3485
Nonvariable 2,254,817 2,481,443 2,520,842 2,529,776 2,532,615

Periodic 234 397 619 944 1321
Nonperiodic 432 893 1326 1769 2164

DSCT 0 1 5 18 37
EB 6 39 97 176 258
RotVar 8 48 132 296 496
RRLYR 61 90 108 129 142

CV 0 3 18 79 210
QSO 160 630 1186 1589 1834
SNe 0 1 4 6 14

Note. Results for all layers in the hierarchical scheme are presented.
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6. Summary

The HiTS survey was designed for the main purpose of
studying the early phase of supernova events. Despite this, the
sky coverage, fast cadence, and deep observations make HiTS
a survey unique in this type, allowing studies of faint transient
and variable sources with characteristic timescales from hours
to days. In this work, we have compiled a catalog of detections
for HiTS, describing the photometric and astrometric calibra-
tions. We estimated the limiting and completeness magnitudes
of our catalogs, concluding that the survey depth is about 24.4,
24.3, 24.1, and 23.8 mag in the u, g, r, and i bands,
respectively. We compared the photometric results with the
PanSTARRS catalogs and estimated magnitude deviations of
the order of 0.02, 0.04, and 0.07 for the g, r, and i bands,
respectively. Catalogs are available in the project archive of
HiTS (see footnote 13).

We followed an ML procedure to automatically classify
sources by variability. We calculated a set of features designed
for variability studies for all the light curves that have more
than 15 data points. The total number of light curves compiled
is 2,536,100 from the 2014 and 2015 observation campaigns.
We address the difficulties of training-set creation following
different approaches: the standard procedures of cross-match-
ing with public catalogs (SDSS DR9, GCVS, CSS, and VSX),
visual inspections of light curves, or a more data-science
approach such as AL and TL. Finally, we took advantage of
the known examples for some classes to perform data
augmentation.

For the classification model, we use RF classifiers following
a hierarchical scheme. First, unlabeled data were classified as
variable or nonvariable; then, variable candidates were
separated between periodic and nonperiodic. Next, periodic
candidates were classified as RRLYR, EB, DSCT, and RotVar
and nonperiodic candidates as QSO, CV, and SNe. For each
layer of the classification, the RF gives classification
probabilities that are reported in the variable candidate catalog
(the description of the catalog is in Table 7).

In this work, we describe different strategies to create the
training set that can be followed when supervised classification
is used. We present and discuss the problematics that are
presented when the training set is built and how this impacts
the performance of the classifier. It is important that the
characteristic timescales of the variable sources we are
searching can be represented with the time span of the data
and the distribution in magnitudes of the training set represents
the distribution of the unlabeled data. Otherwise, the classifier
will perform well only within the range of parameters of the
training set. We show how an unbalanced training set leads to a
classification that favors more populated classes in the training
set, and we address this issue by injecting synthetic augmented
data into classes with periodic signals.

In this work, we face the full process of analysis of
astronomical data, giving a complete description of the
challenges that need to be tackled. We take advantage of the
unique characteristics of HiTS, such as survey depth, field of
view, observation cadence, and data volume, which present an
excellent laboratory for the next generation of large surveys
like LSST. The HiTS observations reach a similar limiting
magnitude as LSST; therefore, they provide an important data
set to test future LSST software and start building libraries of
light curves for different variability classes, which will be

extremely important for the process of supervised automatic
classifications needed to analyze LSST data.
Finally, the catalogs released by this work represent the first

data release (DR1) of the HiTS survey. For the next DR, we
plan to implement PSF photometry, as well as forced
photometry for sources with no detections in a given epoch
image. Additionally, we will improve the data access using a
database framework, for which we are testing the use of a
dedicated time-series database like influxDB or others.
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scikit-learn (Pedregosa et al. 2011).

Appendix A
Catalog Description

Appendix A comprises Tables 5, 6, and 7.

Table 5
List of Column Names, Units, and Description for Object Catalog

Column Name Units Default Value Description

ID dimensionless NA Survey ID of the source (“HiTS”+“hhmmss”+“ddmmss”)
internalID dimensionless NA Internal ID of the source (“Filed”_“CCD”_“Xpix”_“Ypix”)
X pixels −999 Pixel X position in reference image
Y pixels −999 Pixel Y position in reference image
raMedian deg −999 Median right ascension position
decMedian deg −999 Median declination position
raMedianStd deg −999 Standard deviation of right ascension across detections
decMedianStd deg −999 Standard deviation of declination across detections
ugriaN dimensionless 0 Number of single detections in a given band
ugriaClassStar dimensionless 0 Galaxy/star classification from SExtractorb

ugriaEllipticity dimensionless −999 Derived ellipticity from SExtractor’s Kron aperture
ugriaFWHM arcsec −999 SExtractor’s FWHM for the source
ugriaFlags dimensionless 0 SExtractor’s flagb for the source
ugriaFluxRadius arcsec −999 Radius at 50% of the total flux
ugriaKronRadius arcsec −999 Kron radius for a 2D apertureb

ugriaMedianAp1Flux μJy −999 Median integrated flux within a circular aperture with 1 FWHM radius
ugriaMedianAp1FluxErr μJy −999 Median error of the integrated flux within a circular aperture with 1 FWHM radius
ugriaMedianAp1FluxStd μJy −999 Standard deviation of integrated flux within a circular aperture with 1 FWHM radius
ugriaMedianAp1Mag AB magnitudes −999 Median magnitude within a circular aperture with 1 FWHM radius
ugriaMedianAp1MagErr AB magnitudes −999 Median error of the magnitude within a circular aperture with 1 FWHM radius
ugriaMedianAp1MagStd AB magnitudes −999 Standard deviation of the magnitude within a circular aperture with 1 FWHM radius
ugriaMedianAp2Flux μJy −999 Median integrated flux within a circular aperture with 2 FWHM radius
ugriaMedianAp2FluxErr μJy −999 Median error of the integrated flux within a circular aperture with 2 FWHM radius
ugriaMedianAp2FluxStd μJy −999 Standard deviation of integrated flux within a circular aperture with 2 FWHM radius
ugriaMedianAp2Mag AB magnitudes −999 Median magnitude within a circular aperture with 2 FWHM radius
ugriaMedianAp2MagErr AB magnitudes −999 Median error of the magnitude within a circular aperture with 2 FWHM radius
ugriaMedianAp2MagStd AB magnitudes −999 Standard deviation of the magnitude within a circular aperture with 2 FWHM radius
ugriaMedianAp3Flux μJy −999 Median integrated flux within a circular aperture with 3 FWHM radius
ugriaMedianAp3FluxErr μJy −999 Median error of the integrated flux within a circular aperture with 3 FWHM radius
ugriaMedianAp3FluxStd μJy −999 Standard deviation of integrated flux within a circular aperture with 3 FWHM radius
ugriaMedianAp3Mag AB magnitudes −999 Median magnitude within a circular aperture with 3 FWHM radius
ugriaMedianAp3MagErr AB magnitudes −999 Median error of the magnitude within a circular aperture with 3 FWHM radius
ugriaMedianAp3MagStd AB magnitudes −999 Standard deviation of the magnitude within a circular aperture with 3 FWHM radius
ugriaMedianAp4Flux μJy −999 Median integrated flux within a circular aperture with 4 FWHM radius
ugriaMedianAp4FluxErr μJy −999 Median error of the integrated flux within a circular aperture with 4 FWHM radius
ugriaMedianAp4FluxStd μJy −999 Standard deviation of integrated flux within a circular aperture with 4 FWHM radius
ugriaMedianAp4Mag AB magnitudes −999 Median magnitude within a circular aperture with 4 FWHM radius
ugriaMedianAp4MagErr AB magnitudes −999 Median error of the magnitude within a circular aperture with 4 FWHM radius
ugriaMedianAp4MagStd AB magnitudes −999 Standard deviation of the magnitude within a circular aperture with 4 FWHM radius
ugriaMedianAp5Flux μJy −999 Median integrated flux within a circular aperture with 5 FWHM radius
ugriaMedianAp5FluxErr μJy −999 Median error of the integrated flux within a circular aperture with 5 FWHM radius
ugriaMedianAp5FluxStd μJy −999 Standard deviation of integrated flux within a circular aperture with 5 FWHM radius
ugriaMedianAp5Mag AB magnitudes −999 Median magnitude within a circular aperture with 5 FWHM radius
ugriaMedianAp5MagErr AB magnitudes −999 Median error of the magnitude within a circular aperture with 5 FWHM radius
ugriaMedianAp5MagStd AB magnitudes −999 Standard deviation of the magnitude within a circular aperture with 5 FWHM radius
ugriaMedianKronFlux μJy −999 Median integrated flux within a Kron aperture
ugriaMedianKronFluxErr μJy −999 Median error of the integrated flux within a Kron aperture
ugriaMedianKronFluxStd μJy −999 Standard deviation of integrated flux within a Kron aperture
ugriaMedianKronMag AB magnitudes −999 Median magnitude within a Kron aperture
ugriaMedianKronMagErr AB magnitudes −999 Median error of the magnitude within a Kron aperture
ugriaMedianKronMagStd AB magnitudes −999 Standard deviation of the magnitude within a Kron aperture

Notes. Tables for the 2013 and 2014 data only have one observational band, u and g, respectively.
a All columns are computed for the u, g, r, and i bands if image data are available.
b See Bertin & Arnouts (2010) for further information.
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Table 6
List of Column Names, Units, and Description for the Training Set Catalog Used During the Training and Testing Phase

Column Name Units Default Value Description

ID dimensionless NA Survey ID of the source (“HiTS”+“hhmmss”+“sign”+“ddmmss”)
internalID dimensionless NA Internal ID of the source (“Filed”_“CCD”_“Xpix”_“Ypix”)
raMedian deg −999 Median right ascension position
decMedian deg −999 Median declination position
spCl dimensionless NA Spectral class from SDSS DR9 cross-match resulta

spSubCl dimensionless NA Spectral subclass from SDSS DR9 cross-match resulta

Var_Type dimensionless NA Variability class
Var_subType dimensionless NA Variability subclass
Augmented_data dimensionless −999 Int flag; 0 is real data and 1 is synthetic data

Note.
a See Ahn et al. (2012) for further information.

Table 7
List of Column Names, Units, and Description for the Variable Candidate Catalog, the Classification Result of the Hierarchical RF

Column Name Units Default Value Description

ID dimensionless NA Survey ID of the source (“HiTS”+“hhmmss”+“ddmmss”)
internalID dimensionless NA Internal ID of the source (“Filed”_“CCD”_“Xpix”_“Ypix”)
raMedian deg −999 Median right ascension position
decMedian deg −999 Median declination position
Variable_Prob dimensionless NA Classification probability from the variable/nonvariable layer
Periodic_Prob dimensionless NA Classification probability from the periodic/nonperiodic layer
DSCT_Prob dimensionless NA Classification probability from the periodic subclasses
EB_Prob dimensionless NA Classification probability from the periodic subclasses
RotVar_Prob dimensionless NA Classification probability from the periodic subclasses
RRLYR_Prob dimensionless NA Classification probability from the periodic subclasses
CV_Prob dimensionless NA Classification probability from the nonperiodic subclasses
QSO_Prob dimensionless NA Classification probability from the nonperiodic subclasses
SNe_Prob dimensionless NA Classification probability from the nonperiodic subclasses
Predicted_Class string NA Final label for the classification task
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Appendix B
Feature List and Importance

Appendix B comprises Tables 8 and 9.

Table 8
List of Features Used in This Work

Feature Feature Feature

Amplitude Freq2_harmonics_amplitude_0 MedianBRP
AndersonDarling Freq2_harmonics_amplitude_1 PairSlopeTrend
Autocor_length Freq2_harmonics_amplitude_2 PercentAmplitude
Beyond1Std Freq2_harmonics_amplitude_3 PercentDifferenceFluxPercentile
CAR_mean Freq2_harmonics_rel_phase_0 PeriodGLS
CAR_sigma Freq2_harmonics_rel_phase_1 PeriodLS
CAR_tau Freq2_harmonics_rel_phase_2 PeriodWMCC
Con Freq2_harmonics_rel_phase_3 Period_fit
Eta_e Freq3_harmonics_amplitude_0 Psi_CS
FluxPercentileRatioMid20 Freq3_harmonics_amplitude_1 Psi_eta
FluxPercentileRatioMid35 Freq3_harmonics_amplitude_2 Q31
FluxPercentileRatioMid50 Freq3_harmonics_amplitude_3 Rcs
FluxPercentileRatioMid65 Freq3_harmonics_rel_phase_0 Skew
FluxPercentileRatioMid80 Freq3_harmonics_rel_phase_1 SlottedA_length
Freq1_harmonics_amplitude_0 Freq3_harmonics_rel_phase_2 SmallKurtosis
Freq1_harmonics_amplitude_1 Freq3_harmonics_rel_phase_3 Std
Freq1_harmonics_amplitude_2 Gskew StetsonK
Freq1_harmonics_amplitude_3 LinearTrend StetsonK_AC
Freq1_harmonics_rel_phase_0 MaxSlope g−i
Freq1_harmonics_rel_phase_1 Mean g−r
Freq1_harmonics_rel_phase_2 Meanvariance r−i
Freq1_harmonics_rel_phase_3 MedianAbsDev

Note. Color indexes were calculated from the g, r, and i bands. For further details, see Nun et al. (2015).
We use features previously defined in the FATS library, and we add period estimation from GLS and CKP calculated by the gatspy (Vanderplas et al. 2016) and P4j
(Huijse et al. 2018) Python packages, respectively.
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Table 9
Feature Importance (Top 10) Derived from the RF Classifier at Each Layer of the Hierarchical Scheme

Variable/Nonvariable Periodic/Nonperiodic Periodic Classes Nonperiodic Classes

Feature Rank Feature Rank Feature Rank Feature Rank
(1) (2) (3) (4) (5) (6) (7) (8)

Period_fit 0.1813 Period_fit 0.1837 PeriodLS 0.0912 LinearTrend 0.0734
Psi_eta 0.1417 CAR_sigma 0.1133 CAR_tau 0.0823 Autocor_length 0.0679
SmallKurtosis 0.0999 Freq1_harmonics_amplitude_0 0.0869 CAR_sigma 0.0769 Amplitude 0.0514
StetsonK_AC 0.0671 Psi_eta 0.0860 Gskew 0.0757 Psi_eta 0.0489
Mean 0.0572 Std 0.0784 Meanvariance 0.0723 Rcs 0.0448
PeriodLS 0.0509 Q31 0.0610 CAR_mean 0.0690 PeriodLS 0.0384
Q31 0.0496 Meanvariance 0.0461 Skew 0.0498 Freq1_harmonics_amplitude_3 0.0371
Meanvariance 0.0492 CAR_tau 0.0322 PercentDifferenceFluxPercentile 0.0444 Meanvariance 0.0365
MedianAbsDev 0.0469 PeriodLS 0.0251 PeriodGLS 0.0400 Q31 0.0358
PercentDifferenceFluxPercentile 0.0419 SmallKurtosis 0.0207 MaxSlope 0.0390 Freq1_harmonics_amplitude_1 0.0346

Note. The first two columns refer to the variable/nonvariable classifier; the next two columns refer to the periodic/nonperiodic classifier. Columns (5) and (6) refer to the periodic classes (DSCT, EB, RotVar, and
RRLYR), and the final two columns refer to the nonperiodic classes (CV, QSO, and SNe).
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