630 research outputs found
Load-Balancing for Parallel Delaunay Triangulations
Computing the Delaunay triangulation (DT) of a given point set in
is one of the fundamental operations in computational geometry.
Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm
that merges two partial triangulations by re-triangulating a small subset of
their vertices - the border vertices - and combining the three triangulations
efficiently via parallel hash table lookups. The input point division should
therefore yield roughly equal-sized partitions for good load-balancing and also
result in a small number of border vertices for fast merging. In this paper, we
present a novel divide-step based on partitioning the triangulation of a small
sample of the input points. In experiments on synthetic and real-world data
sets, we achieve nearly perfectly balanced partitions and small border
triangulations. This almost cuts running time in half compared to
non-data-sensitive division schemes on inputs exhibiting an exploitable
underlying structure.Comment: Short version submitted to EuroPar 201
Evaluating Signs of Determinants Using Single-Precision Arithmetic
We propose a method of evaluating signs of 2×2 and 3×3 determinants with b-bit integer entries using only b and (b + 1)-bit arithmetic, respectively. This algorithm has numerous applications in geometric computation and provides a general and practical approach to robustness. The algorithm has been implemented and compared with other exact computation methods
Grit ingestion and size-related consumption of tubers by Graylag Geese
In herbivorous birds the processing rate of food is constrained by gizzard capacity. To enhance digestive processes, many species ingest grit to grind the food. Grit ingestion, however, may further limit the capacity of file gizzard. Graylag Geese (Anser anser) wintering in SW Spain fed mainly on Alkali Bulrush (Scirpus maritimus) tubers, showing a preference for small tubers. This preference may be due to a faster disintegration of small tubers than larger ones inside the gizzard. As larger tubers are likely coarser than smaller tubers, more grit would be necessary to process larger tubers. However, the ingestion of more grit to grind large tubers would be at the expense of ingesting additional tubers because of gizzard capacity limitations. Under these circumstances, there may be an inverse relationship between tuber size and amount of grit ingested to optimize food ingestion. Indeed, we found such a relationship. Grit facilitated the disintegration of tubers. This suggests that relying on some amount of grit to facilitate the grinding of food should outweigh the loss of gizzard capacity to the amount of food ingested.Peer Reviewe
Exchange bias in GeMn nanocolumns: the role of surface oxidation
We report on the exchange biasing of self-assembled ferromagnetic GeMn
nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of
this surface oxide shows a multiplet fine structure that is typical of the Mn2+
valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a
coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K)
in a magnetic field as low as 0.25 T. This exchange bias is attributed to the
interface coupling between the ferromagnetic nanocolumns and the
antiferromagnetic MnO-like caps. The effect enhancement is achieved by
depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure
Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures
We present a detailed quantitative magneto-optical imaging study of several
superconductor/ferromagnet hybrid structures, including Nb deposited on top of
thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and
tailored magnetic landscapes imprinted in the permalloy layer. The
magneto-optical imaging data is complemented with and compared to scanning Hall
probe microscopy measurements. Comprehensive protocols have been developed for
calibrating, testing, and converting Faraday rotation data to magnetic field
maps. Applied to the acquired data, they reveal the comparatively weaker
magnetic response of the superconductor from the background of larger fields
and field gradients generated by the magnetic layer.Comment: 21 pages, including 2 pages of supplementary materia
Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns
We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films
grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures
(Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and
11 %. Their crystalline structure, morphology and composition have been
investigated by transmission electron microscopy (TEM), electron energy loss
spectroscopy and x-ray diffraction. In the whole range of growth temperatures
and Mn concentrations, we observed the formation of manganese rich
nanostructures embedded in a nearly pure germanium matrix. Growth temperature
mostly determines the structural properties of Mn-rich nanostructures. For low
growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal
decomposition resulting in the formation of vertical one-dimensional
nanostructures (nanocolumns). Moreover we show in this paper the influence of
growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns
size and density. For temperatures higher than 180deg C, we observed the
formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns
and nanoclusters coexist. Combining high resolution TEM and superconducting
quantum interference device magnetometry, we could evidence at least four
different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn
atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc
nanocolumns (120 K 400 K) and
(iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte
Encoding Synchronous Interactions Using Labelled Petri Nets
International audienceWe present an encoding of (bound) CSP processes with replication into Petri nets with labelled transitions. Through the encoding, the firing semantics of Petri nets models the standard operational semantics of CSP processes, which is both preserved and reflected. This correspondence allows for describing by net semantics the standard CSP observational equivalences. Since the encoding is modular with respect to process syntax, the paper puts on a firm ground the technology transfer between the two formalisms, e.g. recasting into the CSP framework well-established results like decidability of coverability for nets. This work complements previous results concerning the encoding of asynchronous interactions, thus witnessing the expressiveness of (open) labelled nets in modelling process calculi with alternative communication patterns
A theory of normed simulations
In existing simulation proof techniques, a single step in a lower-level
specification may be simulated by an extended execution fragment in a
higher-level one. As a result, it is cumbersome to mechanize these techniques
using general purpose theorem provers. Moreover, it is undecidable whether a
given relation is a simulation, even if tautology checking is decidable for the
underlying specification logic. This paper introduces various types of normed
simulations. In a normed simulation, each step in a lower-level specification
can be simulated by at most one step in the higher-level one, for any related
pair of states. In earlier work we demonstrated that normed simulations are
quite useful as a vehicle for the formalization of refinement proofs via
theorem provers. Here we show that normed simulations also have pleasant
theoretical properties: (1) under some reasonable assumptions, it is decidable
whether a given relation is a normed forward simulation, provided tautology
checking is decidable for the underlying logic; (2) at the semantic level,
normed forward and backward simulations together form a complete proof method
for establishing behavior inclusion, provided that the higher-level
specification has finite invisible nondeterminism.Comment: 31 pages, 10figure
High-throughput screening of tick-borne pathogens in Europe
Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases
Surface-enhanced Raman spectroscopy of the endothelial cell membrane
We applied surface-enhanced Raman spectroscopy (SERS) to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces
- …
