-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

N\

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a postprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60590

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

https://core.ac.uk/display/16146439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/60590

A Theory of Normed Simulations

DAVID GRIFFIOEN and FRITS VAANDRAGER
University of Nijmegen

In existing simulation proof techniques, a single step in a lower-level specification may be simu-
lated by an extended execution fragment in a higher-level one. As a result, it is cumbersome to
mechanize these techniques using general purpose theorem provers. Moreover, it is undecidable
whether a given relation is a simulation, even if tautology checking is decidable for the underlying
specification logic. This paper studies various types of normed simulations. In a normed simula-
tion, each step in a lower-level specification can be simulated by at most one step in the higher-level
one, for any related pair of states. In earlier work we demonstrated that normed simulations are
quite useful as a vehicle for the formalization of refinement proofs via theorem provers. Here we
show that normed simulations also have pleasant theoretical properties: (1) under some reasonable
assumptions, it is decidable whether a given relation is a normed forward simulation, provided
tautology checking is decidable for the underlying logic; (2) at the semantic level, normed for-
ward and backward simulations together form a complete proof method for establishing behavior
inclusion, provided that the higher-level specification has finite invisible nondeterminism.

Categories and Subject Descriptors: F.1.1 [Computation by abstract devices]: Models of
Computation—Automata; F.3.1 [Logics and meanings of programs]: Specifying and Verifying
and Reasoning about Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: Automata, backward simulations, computer aided verifica-
tion, forward simulations, history variables, normed simulations, prophecy variables, refinement
mappings

1. INTRODUCTION

Simulation relations and refinement functions are widely used to prove that a lower-
level specification of a reactive system correctly implements a higher-level one [Jon-
sson 1994; Lynch 1996; Roever and Engelhardt 1998]. Proving soundness and com-
pleteness of proof rules for simulation and refinement has attracted the attention
of many researchers in the past two or three decades [Milner 1971; Lamport 1983;
Jonsson 1985; Lynch and Tuttle 1987; Stark 1988; Klarlund and Schneider 1989;
1993; Jonsson 1990; 1991; Abadi and Lamport 1991; Lynch and Vaandrager 1995].
The usefulness of all these proof methods was demonstrated by their proposers,
who applied them to often highly nontrivial case studies. However, all these refine-

Author’s address: Nijmeegs Instituut voor Informatica en Informatiekunde, University of Ni-
jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, E-mail griffioen42@zonnet.nl
and fvaan@cs.kun.nl. A preliminary version of this paper appeared as Sections 1and 2 in [Grif-
fioen and Vaandrager 1998]. Research supported by the Netherlands Organization for Scientific
Research (NWO) under contract SION 612-316-125.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2003 ACM 1529-3785/2003/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003, Pages 1-33.

mailto:griffioen42@zonnet.nl
mailto:fvaan@cs.kun.nl

2 . D. Griffioen and F. Vaandrager

ment/simulation proofs were done manually, and they were typically quite long and
tedious. The field has come to realize that if we want to scale up these methods to
larger examples, it really matters that the semantical analysis can be carried out
with the help of a software tool that requires little or no human intervention. This
led Wolper [1997] to propose the following criterion for “formal” methods

Criterion of Semantical Computational Support: A formal method
provides semantical computational support of it allows software tools for
checking semantical properties of specifications.

Several incomplete refinement/simulation proof rules have been mechanized suc-
cessfully [Helmink et al. 1994; Nipkow and Slind 1995; Devillers et al. 2000]. A
mechanization of a complete set of simulation rules isreported by Sogaard-Andersen
et al. [1993], but in this approach the verification process is highly interactive
and it does not satisfy Wolper’s criterion of semantical computational support. In
fact, we believe it will be difficult to efficiently mechanize any of the above men-
tioned complete proof methods using a general purpose theorem prover: too much
user interaction will be required. Earlier [Griffioen and Vaandrager 1998; Griffioen
2000][Chapter 6], we proposed a proof method based on normed simulations and
showed that it can be mechanized efficiently using PVS. In the present paper we
study the theoretical properties of normed simulations. In particular, we establish
that normed forward and backward simulations together form a complete proof
method for establishing behavior inclusion. Before we discuss the technical contri-
butions of this paper in more detail, we first describe the problem that arises in
the mechanization of existing complete proof methods, and how this can be solved
using normed simulations.

Technically, a simulation (or refinement) is a relation (or function) R between
the states of a lower-level specification A and a higher-level specification B, that
satisfies a condition like

(s, uyGR As— t " 3v:iu— v A (tv) GR (1)

(If lower-level state s and higher-level state u are related, and in A there is a
transition from s to t, then there is a matching transition in B from u to a state v
that relates to t; see also Figure 1.) The existence of a simulation implies that any
behavior of A can also be exhibited by B .

Fig. 1. Transfer condition (1).

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 3

The main reason why simulations are useful is that they reduce global reasoning
about behaviors and executions to local reasoning about states and transitions.
However, to the best of our knowledge, all complete simulation proof methods that
appear in the literature fall back on some form of global reasoning in the case of
specifications containing internal (or stuttering) transitions. The usual transfer
condition for forward simulations [Lynch and Vaandrager 1995], for instance, says

(s,uy GR A s— t ~ 3 execution fragment a :first(a) = u)

A trace (a) = trace(a) A (t, last(a)) GR
(Each lower-level transition can be simulated by a sequence of higher-level transi-
tions which, apart from the action that has to be matched, may also contain an
arbitrary number of internal “t” transitions; see also Figure 2.) Thus the research

program to reduce global reasoning to local reasoning has not been carried out
to its completion. In manual proofs of simulation relations, this is usually not

u

Fig. 2. Transfer condition (2).

a problem: in practice lower-level transitions are typically matched by at most
one higher-level transition; moreover humans tend to be quite good in reasoning
about sequences, and move effortlessly from transitions to executions and back. In
contrast, it turns out to be rather cumbersome to formalize arguments involving
sequences using existing theorem provers [Devillers et al. 1997]. In fact, in sev-
eral papers in which formalizations of simulation proofs are described, the authors
only consider a restricted type of simulation in which each lower-level transition is
matched by at most one higher-level transition [Helmink et al. 1994; Nipkow and
Slind 1995; Devillers et al. 2000]. However, there are many examples of situations
where these restricted types of simulations cannot be applied. In approaches where
the full transfer condition (2) is formalized [SOgaard-Andersen et al. 1993], the user
has to supply the simulating execution fragments a to the prover explicitly, which
makes the verification process highly interactive. Jonsson [1990] presents a variant
of the completeness theorem of Abadi and Lamport [1991] in terms of certain for-
ward and backward simulations in which lower-level transitions are matched by at
most one higher-level transition. However, his completeness result is only partial in
the sense that he requires that the higher-level automaton contains no non-trivial
T-steps. In our view this restriction is problematic, especially in a stepwise refine-
ment approach where the higher-level specification in one design step may be the

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

4 . D. Griffioen and F. Vaandrager

lower-level specification from a previous design step. All the complications that
we address in our paper are due to the possible presence of internal actions in the
higher-level automaton.

In this paper, we study a simulation proof method which remedies the above
problems. The idea is to define a function n that assigns a norm n(s — t,u), in
some well-founded domain, to each pair of a transition in A and a state of B. If
u has to simulate transition s — t then it may either do nothing (if a is internal
and t is related to u), or it may do a matching a-transition, or it may perform an
internal transition u — v such that the norm decreases, i.e.,

n(s — t,v) < n(s— t,u).

We establish that normed forward simulations and normed backward simulations
together constitute a complete proof method for establishing trace inclusion. In
addition we show how history and prophecy relations (which are closely related to
history and prophecy variables [Abadi and Lamport 1991]) can be enriched with
a norm function, to obtain another complete proof method in combination with a
simple notion of refinement mapping.

The preorders generated by normed forward simulations are strictly finer than
the preorders induced by Lynch and Vaandrager’s forward simulations [1995]. In
fact, we will characterize normed forward simulations in terms of branching forward
simulations [Glabbeek and Weijland 1996], and present a similar characterization
for the backward case. It is possible to come up with a variant of normed forward
simulation that induces the same preorder as forward simulations, but technically
this is somewhat more involved [Griffioen 2000][Section 6.5.10].

W hen proving invariance properties of programs, one is faced with two problems.
The first problem is related to the necessity of proving tautologies of the assertion
logic, whereas the second manifests in the need of finding sufficiently strong in-
variants. In order to address the first problem, powerful decision procedures have
been incorporated in theorem provers such as PVS [Owre et al. 1995]. If tautology
checking is decidable then it is decidable whether a given state predicate is valid
for the initial states and preserved by all transitions. The task of finding such a
predicate, i.e. solving the second problem, is in most cases still the responsibility of
the user, even though some very powerful heuristics have been devised to support
and automate the search [Bensalem et al. 1996; Manna et al. 1998; Lakhnech et al.
2001; Bensalem et al. 2000]. Analogously, if specifications A and B, a conjectured
forward simulation relation R and norm function n can all be expressed within a
decidable assertion logic, and if the specification of B only contains a finite number
of deterministic transition predicates, then it is decidable whether the pair (R, n)
is a normed forward simulation. This result, which does not hold for earlier ap-
proaches such as [Lynch and Vaandrager 1995], is a distinct advantage of normed
forward simulations.

The idea of using norm functions to prove simulation relations was also developed
by Groote and Springintveld [1995], who used it to prove branching bisimilarity in
the context of the process algebra uCRL. However, their norm function is defined
on the states of B only and does not involve the transitions of A. As a consequence,
their method does not always apply to diverging processes. Norm functions very
similar to ours were also studied by Namjoshi [1997]. He uses them to obtain a

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 5

characterization of the stuttering bisimulation of Browne et al. [1988], which is the
equivalent of branching bisimulation in a setting where states rather than actions are
labeled [De Nicola and Vaandrager 1995]. Neither Groote and Springintveld [1995],
nor Namjoshi [1997] address effectiveness issues. Although we present normed
simulations in a setting of labeled transition systems, it should not be difficult
to transfer our results to a process algebraic setting such as that of Groote and
Springintveld [1995] or a state based setting such as Namjoshi’s [1997]. Inspired
by our approach, norm functions have been used by Baier and Stoelinga [2000] to
define a new bisimulation equivalence for probabilistic systems.

In this paper, we only present maximally simple examples to illustrate the var-
ious definitions and results. Earlier [Griffioen and Vaandrager 1998; Griffioen
2000][Chapter 6], we used normed simulations in a substantial case study, namely
the verification of the leader election protocol that is part ofthe IEEE 1394 “Firewire”
standard. This verification has been mechanically checked using PVS.1

In the presentation of our results, we will closely follow Lynch and Vaandrager
[1995] and stick to their notations. In fact, our aim will be (amongst others) to de-
rive analogous results to theirs, only for different types of simulations. However, we
decided not to present normed versions of their forward-backward and backward-
forward simulations of, since these simulations have thus far not been used in prac-
tice and technically this would bring nothing new. Apart from the notion of a
norm function, a major technical innovation in the present paper is a new, sim-
ple definition of execution correspondence [Gawlick et al. 1993; SOgaard-Andersen
et al. 1993], and the systematic use of this concept in the technical development.
Although here we only address simulation proof techniques for establishing safety,
we expect that based on the execution correpondence lemma’s that we prove it will
be easy to generalize our results to a setting with liveness properties. We leave it
as a topic for future research to substantiate this claim.

2. PRELIMINARIES

In this section, we briefly recall some basic concurrency theory definitions [Lynch
and Vaandrager 1995]. An automaton (or labeled transition system) A consists of

—a (possibly infinite) set states (A) of states,

—a nonempty set start(A) C states (A) of start states,

—a set acts (A) of actions that includes the internal (or stuttering) action t, and
—a set steps(A) C states (A) x acts(A) x states (A) of steps.

Write s— a t as a shorthand for (s,a,t) G steps(A). We let ext(A), the external
actions, denote acts (A) —{t}. An execution fragment of A is a finite or infinite
alternating sequence, sOalsla2s2ees, of states and actions of A, beginning with a
state, and if it is finite also ending with a state, such that for all i > 0, si-1 SN,
An execution of A is an execution fragment that begins with a start state. We denote
by execs*(A) and execs(A) the sets of finite and all executions of A, respectively.
A state s of A is reachable if s occurs as the last state in some finite execution a of

--Actually, we discovered the notion of a normed simulation while formalizing the correctness proof
of this leader election protocol.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

6 . D. Griffioen and F. Vaandrager

A. In this case we write reachable (A, s). Also, we write reachable (A) for the set of
reachable states of A.

The trace of an execution fragment a, notation trace(a), is the subsequence of
non-T actions occurring in a. A finite or infinite sequence R of external actions
is a trace of A if A has an execution a with B = trace(a). Write traces*(A) and
traces (A) for the sets of finite and all traces of A, respectively. Write A <*T B if
traces*(A) C traces*(B), and A <t B if traces(A) C traces(B).

Suppose A is an automaton, s and t are states of A, and R is a finite sequence
over ext(A). We say that (s,B,t) is a move of A, and write s=>at, or just s=»t
when A is clear, if A has a finite execution fragment a that starts in s, has trace
and ends in t.

Three restricted kinds of automata play an important role in this paper:

(1) A is deterministic if \start(A)| = 1, and for any state s and any finite sequence
B over ext(A), there is at most one state t such that s=>t. A deterministic
automaton is characterized uniquely by the properties that \start(A)\= 1, every
T-step is of the form (s, t,s) for some s, and for each state s and each action a
there is at most one state t such that s — a t.

(2) A has finite invisible nondeterminism (fin) if start(A) is finite, and for any state
s and any finite sequence B over ext(A), there are only finitely many states t
such that s =>At.

(3) A is a forest if, for each state s of A, there is exactly one execution that leads
to s. A forest is characterized uniquely by the property that all states of A are
reachable, start states have no incoming steps, and each of the other states has
exactly one incoming step.

The relation after (A) consists of the pairs (8, s) for which there is a finite execution
of A with trace B and last state s:

after (A) = {(R,s) \3a G execs*(A) :trace(a) = B and last(a) = s}.

(Here last denotes the function that returns the last element of a finite, nonempty se-

quence.) We also define past(A) to be the inverse of after (A), past(A) = after (A)-1;
this relates a state s of A to the traces of finite executions of A that lead to s.

The following elementary lemma by Lynch and Vaandrager [1995] states that for
the restricted kinds of automata defined above, the relations after and past satisfy
certain nice properties.

Lemma 2.1.

(1) If A is deterministic then after (A) is afunction from traces*(A) to states (A).

(2) If A has fin then after (A) is image-finite, i.e., each trace in the domain of
after (A) is only related to finitely many states.

(3) If A is aforest then past(A) is afunction from states (A) to traces*(A).

3. STEP REFINEMENTS AND EXECUTION CORRESPONDENCE

In this section, we present step refinements, the simplest notion of simulation that
we consider in this paper. In order to prove soundness of step refinements, we also
introduce the auxiliary notion of execution correspondence. This notion plays a key

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 7

role in this paper; the technical lemmas that we prove in this section will also be
used repeatedly in subsequent sections.

3.1 Step Refinements

Let A and B be automata. A step refinement from A to B is a partial function r
from states (A) to states (B) that satisfies the following two conditions:

(1) If s G start(A) then s G domain(r) and r(s) G start(B).

(2) If s—a At A s Gdomain(r) thent G domain(r) and
(@) r(s) =r(t) Aa=t,or
(b) r(s) r(t).

Note that, by a trivial inductive argument, the set of states for which r is defined
contains all the reachable states of A (and is thus an invariant of this automaton).
We write A <R B if there exists a step refinement from A to B.

As far as we know, the notion of step refinements was first proposed by Nipkow
and Slind [1995]. However, if we insist on the presence of stuttering steps s — s for
each state s (a common assumption in models of reactive systems) then clause (2a)
in the above definition becomes superfluous and the notion of a step refinement
reduces to that of a homomorphism between reachable subautomata [Ginzburg
1968]. Step refinements are slightly more restrictive than the possibility mappings
of Lynch and Tuttle [1987] (called weak refinements by Lynch and Vaandrager
[1995]). In the case of a possibility mapping each (reachable) step of A may be
matched by a sequence of steps in B with the same trace. This means that in the
above definition condition (2) is replaced by:

2. Ifs—at A s G domain(r) then t G domain(r) and B has an execution
fragment a with first(a) = r(s), trace(a) = trace(a) and last(a) = r(t).

Observe that, unlike step refinements, possibility mappings do not reduce global
reasoning to local reasoning.

Example 3.1. Figure 3 illustrates the notion of a step refinement. Note that the
t-steps in A are not matched by any step in B. Also the c-step in A is not matched
by any step in B : both source and target states of this step are outside the domain
of the step refinement. This is allowed since both states are unreachable. Observe
that there is no step refinement from B to A, but that there exists a possibility
mapping from B to A.

Figure 4 gives another example. In this case there is a step refinement from A’
to B' but not from B' to A'. There is not even a possibility mapping from B' to
A

The following proposition states a basic sanity property of step refinements.
PROPOSITION 3.2. <r is apreorder (i.e., is transitive and reflexive).

Proof. The identity function from states (A) to itself trivially is a step refine-
ment from A to itself. Hence <R is reflexive. Transitivity follows from the obser-
vation that if r is a step refinement from A to B and r' is a step refinement from
B to C, then the function composition r' or is a step refinement from A to C. O

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

8 D. Griffioen and F. Vaandrager

s5

s6

Fig. 3. A step refinement.

Fig. 4. Another step refinement.

3.2 Execution Correspondence

If there exists a step refinement from A to B then we can construct, for each
execution fragment of A, a corresponding execution fragment of B with the same
trace. The notion of ‘corresponding’is formalized below.

Suppose A and B are automata, R C states(A)x states(B), and a = sOalsla2s2eee
and a' = uOblulb2u2ee+e are execution fragments of A and B, respectively. Let
index (a) and index (a') denote the index sets of a and a'. Then a and a' corre-
spond via R and are R-related, notation (a, a') G R, if there exists an index relation
over R, i.e., a relation I C index(a) x index(a') such that (1) if two indices are
related by | then the corresponding states are related by R; (2) | is monotone; (3)
each index of a is related to an index of a' and vice versa; (4) sides of “squares”
always have the same label and sides of “triangles” are labeled with t. Formally
we require, for i,i' G index(a) and j,j' G index(a'),

1) @G,j)yc1 ~ (si,uj) GR
ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 9

) (i,j) GLA(@G)Y GILAI<i" ~ j<j'

(3) I and |- 1are total

4) (i,j) GIA(@G{+ 1,j+ 1) Gl ~ ai+l = bhj+1
(i,j) GIA(i+1,j) GI A oai+l =t
(i,j)GILA(i,j + 1) GlI A bj+l =t

We write (A, B) G R if for every execution a of A there is an execution a' of B
such that (a, a') GR, and [A,B] GR if for every finite execution a of A there is a
finite execution a' of B with (a, a') G R. Figure 5 illustrates the correspondence
between two executions of automata A and B from Figure 3.

uo u2 T u2 T u2 u2

Fig. 5. Execution correspondence.

Another notion of correspondence has been presented by Sogaard-Andersen,
Lynch et al. [1993; 1993] and formalized by Mueller [1998]. W ithin the theory
of /0O automata, execution correspondence plays a crucial role in proofs of preser-
vation of both safety and liveness properties. Our notion is more restrictive than
earlier work [Gawlick et al. 1993; SOgaard-Andersen et al. 1993], but technically
simpler. Moreover it has the advantage that it preserves ‘until’ properties. In this
paper, we only study safety properties and it suffices to know that corresponding
executions have the same trace. The latter fact is established in the next lemma.

Lemma 3.3. (Corresponding execution fragments have the same trace)
(1) Suppose | is an index relation as above and (i,j) G1. Then
trnce(slalsl eseaisi) = trace (UO* u 1eeebjuj).
(2) If (a, a") GR then trace(a) = trace(a').
Proof. For (1), suppose (i,j) GI. By induction on i+ j we prove
trace (sOalsleesaisi) = trace(u0O™u leeebjuj).

Ifi+j = 0then both i and j are 0. Clearly, trace(s0) = trace(u0) = A

For the induction step, suppose i + j > 0. For reasons of symmetry we may
assume, without loss of generality, that i > 0. Let j' be the largest index with
j' <j and (i—1,j') GI. (By monotonicity, i —1 can only be related to indices
less than or equal to j, and by totality there is at least one such an index.) We
distinguish between three cases:

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

10 . D. Griffioen and F. Vaandrager

(1) j'=j. Then by condition (4b), ai = t. By induction hypothesis,
trace (sOalsleesai—lsi—1) = trace (U0 u leeebjuj).

Hence trace(sOa s eeeaisi) = trace (u0™ u leeebjuj).
(2) j'=j —1. Then by condition (4a), ai = bj. By induction hypothesis,

trace (sOalsleeeai—lsi—1) = trace (U0OM u leeebj—luj—1).

Hence trace(sOa s eeeaisi) = trace (uObluleesebjuj).
(3) j' <j —1 Then by conditions (2) and (3), (i,j —1) G 1. By condition (4c),
this implies bj = t. By induction hypothesis,

trace (sOalsleeeaisi) = trace (uObluleeebj 1uj—1).
Hence trace(sOa s eeeaisi) = trace (Uu0™ u leeebjuj).

This completes the proof of the induction step.

For (2), suppose that (a,a') G R. Then there exists an index relation | that
relates a and a'. Using (1) and the fact that both I and I —1 are total, it follows
that each finite prefix of trace(a) is also a finite prefix of trace(a'), and vice versa.
This implies trace(a) = trace(a'). O

The next corollary will be used repeatedly in the rest of this paper. It states that
in order to prove trace inclusion between automata A and B it suffices to find for
each execution of A a corresponding execution of B. Depending on whether one
wants to prove inclusion of all traces or of finite traces only, a stronger respectively
weaker type of execution correspondence is required.

COROLLARY 3.4. (Execution correspondence implies trace inclusion)

(1) If (A,B) GR then [A, B] GR.
(2) If [A,B] GR then A <*t B.
(3) If (A,B) GR then A <T B.

Proof. Statement (1) follows from the definitions. Statements (2) and (3) follow
immediately from Lemma 3.3 and the definitions. O

3.3 Soundness and Partial Completeness

The next theorem states that if there is a step refinement from A to B, it is
possible to construct, for each execution of A, a corresponding execution of B .
Using Corollary 3.4, this implies that step refinements constitute a sound technique
for proving trace inclusion. In addition, the next theorem also allows us to use step
refinements as a sound technique for proving implementation relations between live
automata, as in previous work [Gawlick et al. 1993; SOgaard-Andersen et al. 1993;
Mueller 1998].

Theorem 3.5. (Soundness of step refinements)
Ifr is a step refinementfrom A to B then (A,B) Gr.

Proof. Suppose r is a step refinement from A to B. Let a = sOalsleeebe an
execution of A. Inductively, we define an execution a' = uObluleeeof B and an
index relation | such that a and a' are r-related via | .

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations 11

To start with, define u0 = r(s0) and declare (0,0) to be an element of I .
Now suppose (i,j) G I and i is a nonfinal index of a. We distinguish between
two cases:

(1) If r(si) —+B r(si+1) then define bj+1 = ai+1, uj+1 = r(si+1), and declare
(i+ 1,j + 1) to be an element of I ;
(2) otherwise, declare (i + 1,j) to be an element of I .

By construction, using the defining properties of a step refinement, it follows that
I is an index relation. This implies (A,B) Gr. O

Step refinements alone do not provide a complete method for proving trace in-
clusion. There is a partial completeness result, however.

Theorem 3.6. (Partial completeness of step refinements)
Suppose A is aforest, B is deterministic and A <*t B. Then A <r B.

Proof. The relation r = after (B)opast (A) is a step refinement from A to B. O

Actually, we can even slightly strengthen the above theorem. It suffices to as-
sume that A restricted to its reachable states is a forest, and that B restricted
to its reachable states is deterministic. In Figure 3, automaton A restricted to
its reachable states is a forest and automaton B is deterministic. As we observed
already, there is a step refinement from A to B. Even if we restrict to reachable
states, automaton B is not a forest and automaton A is not deterministic. As we
observed, there is no step refinement from B to A.

In practice, the preconditions of Theorem 3.6 are seldom met. The higher-level
specification often is deterministic, but it rarely occurs that the lower-level specifica-
tion is a forest. Nevertheless, step refinements have been used in several substantial
case studies [Helmink et al. 1994; Nipkow and Slind 1995; Devillers et al. 2000].

4. NORMED FORWARD SIMULATIONS

Even though there exists no step refinement from automaton B' to automaton A’
in Figure 4, these automata do have the same traces. By moving from functions
to relations it becomes possible to prove that each trace of B' is also a trace of A",
This idea is formalized in the following definition.

A normed forward simulation from A to B consists of a relation f C states (A) x
states (B) and a function n : steps (A) x states(B) ~ S, for some well-founded set
5, such that (here f [s] denotes the set {u \(s,u) Gf}):

(1) If s G start(A) then f [s] n start(B) = 0.
(2) If s—"at A uGf[s] then
(@ uGfI[t] Aa=rt,or
(b) 3vGfJt] :u—aByv, or
() 3vGfIs]:u—"b v A n(s—" t,v) <n(s—" t, u).
Write A <F B if there exists a normed forward simulation from A to B.
The intuition behind this definition is that if s— a t and (s,u) G f, then either

(a) the transition in A is a stuttering step that does not have to be matched, or (b)
there is a matching step in B, or (c) B can do a stuttering step which decreases

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

12 . D. Griffioen and F. Vaandrager

the norm. Since the norm decreases at each application of clause (c), this clause
can only be applied a finite number of times. In general, the norm function may
depend both on the transitions in A and on the states of B. However, if B is
convergent, i.e., there are no infinite r-paths, then one can simplify the type of the
norm function (though not necessarily the definition of the norm function itself)
to n :states(B)~ S. In fact, in the approach of Groote and Springintveld [1995],
which not always applies to divergent processes, the norm function is required to
be of this restricted type.

Example 4.1. In Figure 4, the relation indicated by the dashed lines, together
with an arbitrary norm function, is a normed forward simulation from B' to A"

Consider automata A and B in Figure 3. Let n be the function that assigns norm
1to state sO and norm 0 to all other states of A. Then n together with the relation
indicated by the dashed lines constitutes a normed forward simulation from B to
A.

ui

u3

Fig. 6. Norm function must take steps of C into account.

Now consider the automata C and D in Figure 6. Let m be a norm function
satisfying

1
0

m (sO sl,u0) = 0 m(s0O— sl,ul)
m(sO — s3,u0) = 1 m(s0O — s3,ul)

Then m together with the relation indicated by the dashed lines constitutes a
normed forward simulation from C to D. It is not hard to see that in this example,
where D is not convergent, the norm necessarily depends on the selected step in C.

The example of Figure 6 also serves to illustrate the difference between normed
forward simulations and the forward simulations that were studied by Jonsson [1990;
1991; 1994]. Essentially, Jonsson’s forward simulations are just normed forward
simulations, except that there is no norm function and condition 2(c) has been
omitted. We leave it to the reader to check that there exists no forward simulation
in this sense from C to D. This is the case even when we add “stuttering” r-loops
to each state, as required in Jonsson’s models.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 13

The next proposition asserts that normed forward simulations indeed generalize
step refinements.

Proposition 4.2. A <RB ~ A <FB.

Proof. Together with an arbitrary norm function, any step refinement (viewed
as a relation) is a normed forward simulation. O

The soundness of normed forward simulations is trivially implied by the following
lemma and Corollary 3.4.

LEMMA 4.3. Suppose (f,n) is a normed forward simulation from A to B, A has
an execution fragment a with first state s, and u is a state of B with u G f [s].
Then B has an execution fragment a' that starts in u such that (a, a') Gf .

Proof. Letc:steps(”) x states(B)i {L,C, R} x states(B) be a function such
that ¢(s-1 t,u) = (x,v) and u G f [s] implies

(1) fx = L thenu Gf[f] Aa=r.
(2) Ifx = C thenv Gf[f] Au—1Bv.
(3) If x =R thenv Gf[s] Au—l-bv An(s— t,v) <n(s-1 t u).

The existence of ¢, which chooses between a left move (L) of A, a common move
(C) of A and B, or a right move (R) of B, is guaranteed by the fact that (f,n) is
a normed forward simulation.

Let a = sOaisia2s2ees. Then s = s0. Inductively, we define a sequence a =
z0z\z2e+ee0f 4-tuples in N x N x acts(B) x states(B). The first element in the
sequence is z0= (0,0,r,u). If zk = (i,j,b,u) is an element of the sequence, and i
is a nonfinal index of a, then we define zk+1 as follows

(1) 1fcni—tisi+1,u) = (L,v) then zk+1= (i + 1,j, b, u).
(2) If c™i—ti- si+1,u) = (C,v) then zfc+tl= (i + 1,j + 1,0i+1,v).
(3) Ifc”ri—1si+1,u) = (R,v) then zk+1 = (i,j + 1,r,v).

Suppose that both (i,j,b,u) and (i',j,b',u") occur in sequence a. We claim that
b= b and u = u'. To see why this is true assume without loss of generality that
(i,j,b,u) occurs before (i',j,b',u'). Now observe that the values of both the first
and second component of elements in a increase monotonically. This means that
each successor of (i,j, bu) up to and including (i',j, b',u') has been obtained from
its predecessor by applying rule (1). This implies that the the second respectively
third components of all elements in the sequence from (i,j,b,u) until (i',j,b",u")
coincide. Hence b= b' and u = u".

Using this property, we can define for each element (i,j,b,u) in a, bj = b and
uj = u. Leta" = u0Mu”2u2eesand let I = {(i,j) | 3b,u : (i,j,b,u) occurs in a}.
By construction of a, using the properties of c, it follows that a' is an execution
fragment of B that starts in u, and that | is an index relation over f . This implies
(a,a'") Gf. O

Theorem 4.4. (Soundness of normed forward simulations)
Iff is a normed forward simulation from A to B then (A, B) Gf.

Proof. Immediate from the definitions and Lemma 4.3. O

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

14 D. Griffioen and F. Vaandrager

u2

u3

Fig. 7. Difference between forward simulations and normed forward simulations.

Example 4.5. Consider automata C and E in Figure 7. There does not exist a
normed forward simulation from C to E. Such a simulation would have to relate
states sO and u0. But in order for E to simulate the step sO — s3, it would also
have to relates states sO and u2. But this is impossible since from state u2 there is
no way to simulate the step s0 — s1.

It turns out that there does exist a forward simulation in Lynch and Vaandrager’s
sense [1995] from C to E. In the case of a forward simulation, a step of A may be
matched by a sequence of steps in B with the same trace. This means that in the
definition of a normed forward simulation condition (2) is replaced by:

2. Ifs—" At A u Gf[s] then B has an execution fragment a with first(a) = u,
trace (a) = trace(a) and last(a) G f [t].

The dashed lines in Figure 7 indicate a forward simulation from C to E .
The automata A and B in Figure 3 provide us with a similar example: there
exists a forward simulation from B to A, but no normed forward simulation.

The difference between forward simulations and normed forward simulations is
very similar to the difference between Milner’s observation equivalence [1989] and
the branching bisimulation of Van Glabbeek and Weijland [1996]. In fact, we can
characterize normed forward simulations in terms of “branching forward simula-
tions”, a notion that is inspired by the branching bisimulations of [Glabbeek and
Weijland 1996]. A similar characterization has been obtained by Namjoshi [1997]
in the setting of stuttering bisimulations.

Formally, a branching forward simulation from A to B is arelation f C states (") x
states(B) such that

(1) If s Gstart(”) then f [s] fl start(B) = 0.

2) Ifs atand u Gf [s] then B has an execution fragment that starts in u and
that is f -related to s — t.

The following theorem implies that there exists a normed forward simulation
between two automata ifand only ifthere is a branching forward simulation between
them.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 15

Theorem 4.6.

(1) Suppose (f,n) is a normed forward simulation from A to B. Then f is a
branching forward simulation from A to B.

(2) Suppose f is a branching forward simulation from A to B. Let n(s — t,u)
be 0 ifu G f [s] and otherwise be equal to the length of the shortest execution
fragment that starts in u and that is f -related to s— t. Then (f,n) is a
normed forward simulation from A to B.

Proof. Part (1) follows by Lemma 4.3. The proof of part (2) is routine. O

An interesting corollary of Theorem 4.6 is that if there exists a normed forward
simulation between two automata, there is in fact a normed forward simulation
with a norm that has the natural numbers as its range.

The proof that branching bisimilarity is an equivalence is known to be tricky
[Basten 1996]. Likewise, the proof that branching forward simulations induce a
preorder is nontrivial. We first need to define the auxiliary concept of a reduced
index relation and to prove a lemma about it.

Suppose that a and a' are R-related via index relation | . We say that | is reduced
if the following two conditions are satisfied:

(1) If a is finite then | relates the final index of a only to the final index of a'.
(2) I is N-free: (i,j) GI A (i+21j+ 1)GI ~ i+1j)GI A (i,j+1GI.

Observe that if a is finite and | is reduced, then a' is also finite. The following
technical lemma states that index relations can always be reduced.

Lemma 4.7. Suppose that a and a' are R-related via index relation I . Then a'
has a prefix a" that is R-related to a via a reduced index relation J C I .

Proof. If a is infinite then let a" = a'. If a is finite then let a' be the finite
prefix of a' up to and including the first state whose index is related by | to the
final index of a.

Inductively we define a sequence a = z0z\z2eeeof pairs in N x N. The first
element of the sequence is z0 = (0,0). If zk = (i,j) is an element of the sequence
and i is a nonfinal index then we define zk+1 as follows:

1) (i+1,j+1)G1 ~ zk+tl= (i+ 1,j+ 1)
@) (i+ Lj)GI A@+1,j+1)GI ~ zk+l= (i+ 1,j)
@B (,j+r1cGl A@+1j+1)GI1 ~ zk+tl= (i,j+ 1

Note that since | is an index relation, zk+1 is properly defined. Let J = {(i,]) |
(i,j) occurs in a}. It is routine to check that J C I, that a and a'' are R-related
via J, and that J isreduced. A tricky point is the totality of J and J-1. We prove
that J is total by contradiction. Suppose that J is not total. Let i be the smallest
index of a with J[i] = 0. Letj be the smallest index of a' with (i,j) G1 (j exists
since index relation | is total). Let | be the maximal index of a' with (i —1,1) GJ
(there is a maximal index since (i —1,I) G J implies (i —1,I) G 1, which implies
I < j by monotonicity of index relation I). Let zk = (i —1,1). Since JJ[i] = 0,

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

16 . D. Griffioen and F. Vaandrager

zk+1 = (i —1,1 + 1). Hence (i —1,I +1) G J. But this contradicts the fact that |
be the maximal index of a' with (i —1,I) GJ.

In a similar way also the totality of J-1 and N-freeness can be proved by con-
tradiction. O

We are now prepared to prove that branching forward simulations (and hence
also normed forward simulations) induce a preorder.

Proposition 4.8. <F is a preorder.

Proof. For reflexivity, observe that the identity function from states(”) to itself
is a branching forward simulation from A to itself.

For transitivity, suppose f and g are branching forward simulations from A to
B and from B to C, respectively. We claim that g of is a branching forward
simulation from A to C. It is trivial to check that g o f satisfies condition (1) in
the definition of a branching forward simulation. For condition (2), suppose that
s— at AuG(gof)[s]. Then there exists a state w of B such that w G f [s] and
u G g[w]. Hence there is an execution fragment a starting in w such that s — t
and a are f-related via some index relation I . By Lemma 4.7, we may assume that
I is reduced. Also, there is an execution fragment a' starting in u such that a and
a' are g-related via some index relation J. Again by Lemma 4.7, we may assume
that J is reduced. Using the fact that both | and J are reduced, it is routine to
check that s — t and a' are gof-related via index relation J ol . Thus gof satisfies
condition (2) in the definition of a branching forward simulation. O

Variants of the partial completeness result below appear in several papers [Jon-
sson 1987; Lynch and Vaandrager 1995]. Since higher-level specifications are often
deterministic, this result explains why in practice (normed) forward simulations
can so often be used to prove behavior inclusion.

Theorem 4.9. (Partial completeness of normed/branching forward simulations)
If B is deterministic and A <*t B then A <f B.

Proof. The relation f = after(B) opast(A) is a branching forward simulation
from A to B. O

It is interesting to note that there is one earlier result [Lynch and Vaandrager
1995] concerning forward simulations that does not carry over to the normed
(branching) simulations of this paper. This result, Proposition 3.12, states that
if A is a forest and A <F B then A <R B. The automata C and D of Figure 6
constitute a counterexample. Actually, the same Proposition 3.12 also does not
carry over to the setting of timed automata used earlier [Lynch and Vaandrager
1996].

5. NORMED BACKWARD SIMULATIONS

As we observed, there exists no normed forward simulation from automaton B to
automaton A in Figure 3, even though both automata have the same traces. Also,
there does not exist a normed forward simulation from automaton C to the trace
equivalent automaton E in Figure 7. In both cases a forward simulation in Lynch
and Vaandrager’s sense [1995] exists. However, the example in Figure 8 below

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 17

shows that also forward simulations do not yet provide us with a complete method
for proving trace inclusion. It is well-known from the literature that completeness
can be obtained by adding some form of backward simulation.

Example 5.1. There exists no (normed/branching) forward simulation from au-
tomaton C to automaton F in Figure 8. The relation indicated by the dashed lines
fails since from state u0 the 6-step from sO can not be simulated, whereas from u2
the a-step from sO can not be simulated.

u2

u3

Fig. 8. The need for backward simulations.

In many respects, backward simulations are the dual of forward simulations.
W hereas a forward simulation requires that some state in the image of each start
state should be a start state, a backward simulation requires that all states in the
image of a start state be start states. Also, a forward simulation requires that
forward steps in the source automaton can be simulated from related states in the
target automaton, whereas the corresponding condition for a backward simulations
requires that backward steps can be simulated. However, the two notions are not
completely dual: the definition of a backward simulation contains a nonemptiness
condition, and also, in order to obtain soundness for general trace inclusion, back-
ward simulations also require a finite image condition. The mismatch is due to the
asymmetry in our automata between the future and the past: from any given state,
all the possible histories are finite executions, whereas the possible futures can be
infinite.

Formally, we define a normed backward simulation from A to B to be a pair of a
total relation b C states(”) x states(B) and a function n : (steps(”) U start(")) x
states(B) ~ S, for some well-founded set S, satisfying

(1) If s Gstart(®) A u G b[s] then
(@) u G start(B), or
(b) 3v Gb[s] :v— u A n(s,v) <n(s, u).
(2) Ift—a s A u G b[s] then
(@) uGhbt] Aa=rt,or
(b) 3v Gb[t] :v— u, or
() 3v Gb[s] :v— u An(t—" s,v) <n(t— s, u).

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

18 . D. Griffioen and F. Vaandrager

Write A <b B if there is a normed backward simulation from A to B, and A <iB B
if there is a normed backward simulation from A to B that is image-finite.

Example 5.2. In Figure 8, the relation indicated by the dashed lines is a normed
backward simulation from C to E, for arbitrary norm functions. It is not difficult
to construct normed backward simulations from automaton B to automaton A in
Figure 3, and from automaton C to automaton E in Figure 7.

s0 si s2 s3
G
uo a ui u2 u3 ud
-
H

Fig. 9. No image-finite normed backward simulation.

Figure 9 illustrates the difference between <b and <iB. Relation states(G) x
states(H) together with an arbitrary norm function constitutes a normed backward
simulation from G to H. We claim that no image-finite normed backward simulation
exist. Because suppose that bis such a relation. Then, for all i,j G N with i > 0,

(si,uj) Gb ™~ (si—21uj+ 1) Ghb
This implies that
(si,uj) Gb~ (sO,ui+j) Gb

Since each state si is related to at least one state sj, it follows that state sO is
related to infinitely many states, which is a contradiction.

The following proposition states some trivial connections between the preorders
induced by normed backward simulations and step refinements.

P roposition 5.3.

(1) If all states of A are reachable and A <r B then A <ib B.
(2) IfA <iB B then A <b B.

Proof. Trivial. O
The next lemma is required to prove soundness of normed backward simulations.

LEMMA 5.4. Suppose (b, n) is a normed backward simulation from A to B, A has
a finite execution fragment a with last state s, and u is a state of B with u G b[s].
Then B has a finite execution fragment a' that ends in u such that (a,a') G b.
Moreover, if a is an execution then a' can be chosen to be an execution as well,.

Proof. Similar to the proof of Lemma 4.3. O
ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 19

By Lemma 5.4 and Corollary 3.4, the existence of a normed backward simulation
implies inclusion of finite traces. Normed backward simulations, however, are in
general not a sound method for proving inclusion of infinite traces. As a counterex-
ample, consider automata G and H from Figure 9. There exists a normed backward
simulation from G to H, but the infinite trace of G is not a trace of H. As is
well-known from the literature, a sound method for proving inclusion of infinite
traces can be obtained by requiring image finiteness of the simulation relation.

THEOREM 5.5. (Soundness of normed backward simulations)

(1) Ifbis a normed backward simulation from A to B then [A B] G b.
(2) If moreover b is image-finite then (A, B) Gbh.

Proof. Statement (1) follows immediately by Lemma 5.4 and the totality of b.
In order to prove (2), suppose that b is image-finite. Let a be an execution of A.
We have to establish the existence of an execution a' of B with (a,a') G bh. Ifa
is finite then this follows by Lemma 5.4 and the totality of b. So assume that a
is infinite. We use a minor variation of Konig’s Lemma [Knuth 1997] presented by
Lynch and Vaandrager [1995]:

Let G be an infinite digraph such that (1) G has finitely many roots, i.e.,
nodes without incoming edges, (2) each node of G has finite outdegree,
and (3) each node of G is reachable from some root. Then there is an
infinite path in G starting from some root.

The nodes of the graph G that we consider are pairs (I, 7) where 7 is a finite
execution of B and | is an index relation that relates 7 to some finite prefix of a.
There is an edge from a node (1,7) to a node (I',7") iff 7 is a prefix of 7' and I'
extends | with precisely one element. It is straightforward to check that G satisfies
the conditions of Konig’s Lemma. Hence G has an infinite path. Let J be the union
of all the index relations occurring on nodes in this path, and let a' be the limit of
the finite executions of the nodes in this path. Observe that, by image-finiteness of
b, each index of a occurs in the domain of J. Hence (a,a') Gh. O

The following Proposition 5.6 is in a sense the converse of Proposition 5.3. The
proofis similar to that of the corresponding result by Lynch and Vaandrager [1995].

Proposition 5.6.

(1) If B is deterministic and A <b B then A <r B.
(2) If all states of A are reachable, B has fin and A <b B, then A <iB B.

Proof. For (1), suppose that B isdeterministic and that bisa normed backward
simulation from A to B . Suppose that s is a reachable state of A. We will prove
that b[s] contains exactly one element. Since any normed backward simulation that
is functional on the reachable states trivially induces a step refinement, this gives
us A <r B.

Because b is a normed backward simulation it is a total relation, so we know
b[s] contains at least one element. Suppose that both ui G b[s] and u2 G b[s]; we
prove ul = u2. Since s is reachable, A has an execution a that ends in s. By
Lemma 5.4, B has executions ai and a2 which end in ui and u2, respectively, such

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

20 . D. Griffioen and F. Vaandrager

that (a,ai) Gband (a,a2) Gh. By Lemma 3.3, trace(a) = trace(ai) = trace(a2).
Now ul= u2 follows by Lemma 2.1(1), using the fact the B is deterministic.

For (2), suppose that all states of A are reachable, B has fin, and b is a normed
backward simulation from A to B. Suppose that s is a state of A. Since s is
reachable, there is an execution a that ends in s. Let B be trace ofa. By Lemma 5.4
there exists, for each u G b[s], an execution au of B that ends in u such that
(a,au) Gbh. By Lemma 3.3, trace(au) = B. Hence b[s] C after(B)[R]. But since B
has fin, after (B)[/3] is finite by Lemma 2.1(2). Hence b is image-finite. O

Example 5.7. Consider the two automata in Figure 10. It is easy to see that

Fig. 10. Difference between backward simulations and normed backward simulations.

there does not exist a normed backward simulation from the first to the second
automaton. However, there does exist a backward simulation in Lynch and Vaan-
drager’s sense [1995]. In such a backward simulation, a step of one automaton may
be matched by a sequence of steps in the other automaton with the same trace.

As in the forward case, we will now characterize normed backward simulations
in terms of “branching backward simulations”, and use this characterization to
establish that <b and <iB are preorders.

A branching backward simulation from A to B is a total relation b C states(”) x
states (B) such that

(1) If s G start(®) and u G b[s] then B has an execution that ends in u and is
b-related to s.

(2) Ift—a Asand u Gf [s] then B has an execution fragment that ends in u and
is b-related to t — s.

Theorem 5.8.

(1) Suppose (b,n) is a normed backward simulation from A to B. Then b is a
branching backward simulation from A to B.

(2) Suppose b is a branching backward simulation from A to B. Letn(s,u) be 0
if s is not a start state or u G b[s] and otherwise be equal to the length of
the shortest execution that ends in u and is b-related to s. Furthermore, let

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 21

n(t—*s,u) be 0 ifu G f[s] and otherwise equal to the length of the shortest
execution fragment ending in u that is b-related to t —a s. Then (b,n) is a
normed forward simulation from A to B.

Proof. Statement (1) follows by Lemma 5.4. The proof of statement (2) is
routine. O

As in the forward case, we see that if there exists a normed backward simulation
between two automata, there is in fact a normed backward simulation with a norm
that has the natural numbers as its range.

Proposition 5.9. <B and <iB are preorders.
Proof. Similar to the proof of Proposition 4.8. O

The following partial completeness result is a variation of earlier results [Jonsson
1990; Lynch and Vaandrager 1995].

THEOREM 5.10. (Partial completeness of normed backward simulations)
If A is aforest and A <*t B then A <b B.

Proof. The relation b= after (B) opast(A) is a branching backward simulation
from A to B. O

Note that by Proposition 5.6 we can strengthen the conclusion of Theorem 5.10
to A <iB B in case B has finite invisible nondeterminism.

Example 5.11. Consider the automata A' and B' in Figure 4. There exists no
normed backward simulation from B' to A'. The relation indicated by the dashed
lines fails since the backward transition from state u0 cannot be simulated from
the related state s0. Consequently, normed backward simulations do not provide a
complete proof method for establishing trace inclusion. In the next section, we will
see that completeness can be obtained by combining normed forward and backward
simulations.

6. NORMED HISTORY RELATIONS

In this section we define normed history relations. These provide an abstract view
of the history variables of Abadi and Lamport [1991], which in turn are abstractions
of the auxiliary variables of Owicki and Gries [1976].

A pair (r,n) is a normed history relation from A to B if r is a step refinement
from B to A, and (r_21,n) is a normed forward simulation from A to B. Write
A <HB ifthere exists a normed history relation from A to B.

Clearly A <HB implies A <FB and B <R A. Through these implications, the
preorder and soundness results for normed forward simulations and step refinements
carry over to normed history relations. In fact, if (r,n) is a normed history relation
from A to B then r is just a functional branching bisimulation from B to A in
the sense of Van Glabbeek and Weijland [1996]. Hence, history relations preserve
behavior of automata in a very strong sense. Intuitively, there is a history relation
from A to B if B can be obtained from A by adding an extra state variable that
records information about the history of an execution.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

22 . D. Griffioen and F. Vaandrager

Example 6.1. Consider again the automata A' and B' in Figure 4. Together with
an arbitrary norm function, the dashed lines constitute a normed history relation
from B' to A'. Because, as we observed, there is no step refinement from B' to A",
there exists no normed history relation from A' to B'.

An important example of a history relation is provided by the “unfolding” con-
struction. The unfolding of an automaton A, notation unfold(A), is the automaton
obtained from A by recording the complete history of an execution. Formally,
unfold(A) is the automaton B defined by

— states (B) = execs*(A),
—start(B) = the set of executions of A that consist of a single start state,
—acts(B) = acts(A), and
—for a',a G states(B) and a G acts(B), a' —a B a a = a'a last(a).

The next proposition relates an automaton to its unfolding.
Proposition 6.2. unfold(A) is aforest and A <H unfold(A).

Proof. Clearly, unfold(A) is a forest. The function last which maps each finite
execution of A to its last state is a step refinement from unfold(A) to A, and the
relation last-1, together with an arbitrary norm function, is a normed forward
simulation from A to unfold (A). O

The following completeness theorem, a variation of a result due to Sistla [1991],
asserts that normed history relations together with normed backward simulations
constitute a complete proof method for establishing trace inclusion. Consequently,
also normed forward simulations together with normed backward simulations con-
stitute a complete proof method.

THEOREM 6.3. (Completeness of normed history relations and normed backward
simulations)
If A <*t B then there exists an automaton C such that A <h C <b B.

Proof. Take C = unfold(A). By Proposition 6.2, C is a forest and A <H C.
Since A <*T B, also C <*T B by soundness of history relations. Next apply the
partial completeness result for backward simulations (Theorem 5.10) to conclude
c<bb. [

Observe that if we can assume in addition that B has fin, we may replace <B by
<iB in the conclusion using Proposition 5.6.

Normed forward simulations are equivalent to normed history variables combined
with step refinements: whenever there is a normed forward simulation from A to
B, we can find an intermediate automaton C such that there is a normed history
relation from A to C and a step refinement from C to B. The converse implication
trivially holds since normed history relations and step refinements are special cases
of normed forward simulations. In order to prove the existence of automaton C,
we need to define a notion of “superposition” of automata and to prove a technical
lemma.

Let R C states(A) x states(B) be a relation with R n (start(®) x start(B)) = 0.
The superposition sup(A, B,R) of A and B via R is the automaton C defined by

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 23

— states (C) = R,

—start(C) = R n (start(A) x start(B)),

—acts (C) = acts(A) n acts(B), and

—for (s,u), (t,v) G states(C) and a G acts(C), (s,u) — ¢ (t,v)

tAs=tAu— Y

a
Va=tAu=VvAs—tat

V s—aAtAu—aBuv.

Essentially, the superposition sup(A, B,R) isjust the usual parallel composition of
A and B with the set of states restricted to R.

LEMMA 6.4. Suppose (f,n) is a normed forward simulation from A to B. Let
C = sup(A,B,f) and letn and n be the projection functions that map states of
C to their first and second components, respectively. Let n' be the norm function
given by n'(5,u) = n(6,72(u)). Then (n,n') is a normed history relation from A
to C, and n is a step refinementfrom C to B.

Proof. Straightforward from the definitions. O
Theorem 6.5. A <FB ~ (3C :A <HC <RB).

Proof. Forward implication follows by Lemma 6.4. For backward implication,
suppose A <HC <R B. Then A <F C by the definition of history relations, and
C <F B because any step refinement is a normed forward simulation. Now A <F B
follows by the fact that <F is a preorder. O

Klop and Ariola [1996][Intermezzo 3.23] state a remarkable result: on a domain
of of finitely branching process graphs (i.e., automata considered modulo isomor-
phism) the preorder induced by functional bisimulations (i.e., history relations) is
in fact a partial order: A <H B and B <H A implies A = B. They also present
a counterexample to show that the finite branching property is needed to prove
this result. Below we present a slight generalization of their result [Ariola and
Klop 1996] in the setting of our paper. It turns out to be sufficient to assume that
automata have finite invisible nondeterminism (fin).

THEOREM 6.6. Suppose A and B have fin, A <h B and B <h A. Then the
reachable subautomata of A and B are isomorphic.

Proof. Suppose that (f, n) isa normed history relation from A to B, and (g, m)
is a normed history relation from B to A. Because A and B have fin, both start(A)
and start(B) are finite. Since f is a step refinement, it maps start states of B to
start states of A. Using the fact that f-1 is a forward simulation, we infer that

f is surjective on start states. Hence | start(B) | < | start(A) |. By a similar
argument, using the fact that (g, m) is a normed history relation from B to A, we
obtain | start(A) | < |start(B) |. This means that f is also injective on start
states.

Let B,Y be arbitrary traces of A and B. Using a similar argument as above, we
infer

f (after(A)[R] U after(A)[y]) = after(B)[R] U after(B)[y]
g (after (B)[R] U after (B)[y]) = after(A)[R] U after (A)[y]

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

24 . D. Griffioen and F. Vaandrager

Since, by Lemma 2.1(2), all mentioned sets are finite, it follows that
| after(A)[R] U after(A)[y]l| = | after(B)[R] U after(B)[y] |

This means that f and g are injective on the sets after(B)[R] U after(B)[y] and
after (A)[R] U after (A)[y], respectively.

Since f -1 is a forward simulation, f is surjective on the reachable states. It
remains to show that f is injective on reachable states (once we have this, the
required isomorphism property follows from the fact that f is a step refinement).
Suppose that s and t are reachable states of B such that f (s) = f (t). Then there
are traces B and y such that s G after(B)[R] and t G after(B)[y]. But since f is
injective on after\B)\R\ U after(B)[y], this implies s =1t. O

Intuitively, one may interpret the above result as follows: if A <H B then B con-
tains as much history information as A. If B contains as much history information
as A, and A contains as much history information as B, then they are equal.

7. NORMED PROPHECY RELATIONS

In this section, we will define normed prophecy relations and show that they corre-
spond to normed backward simulations, very similarly to the way in which normed
history relations correspond to normed forward simulations.

A pair (r,n) is a normed prophecy relation from A to B if r is a step refinement
from B to A and (r-1,n) is a normed backward simulation from A to B. We write
A <p B ifthere is a normed prophecy relation from A to B, and A <iP B if there
is a normed prophecy relation (r,n) with r-1 image-finite. Thus A <iP B implies
A <iBB and A <P B, and A <P B implies A <BB and B <R A. Moreover, if all
states of A are reachable, B has finite invisible nondeterminism and A <P B, then
A <iP B . It is easy to check that the preorder and soundness results for backward
simulations and refinements carry over to prophecy relations.

The following lemma is the analogue of Lemma 6.4 in the backward setting.
Using this lemma, we can prove that normed backward simulations are equivalent
to normed prophecy variables combined with step refinements.

Lemma 7.1. Suppose (b,n) is a normed backward simulation from A to B. Let
C = sup(A, B,b) and letn and n be the projection functions that map states of
C to their first and second components, respectively. Let n' be the norm function
given by n'(5,u) = n(5,n2(u)). Then (n, n') is a normed prophecy relation from A
to C, and n is a step refinementfrom C to B. Ifb is image-finite then so is n -1

Theorem 7.2.
(1) A<b B (3C :A <p C <r B).
(2) A <iBB ~ (3C :A <iP C <r B).
Proof. Analogous to that of Theorem 6.5, using Lemma 7.1. O

We can now prove variants of the well-known completeness result of Abadi and
Lamport [1991].

THEOREM 7.3. (Completeness of normed history+prophecy relations and step
refinements)
Suppose A <*t B. Then

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 25

(1) 3C,D:A<h C<PD<rB.
(2) If B has fin then 3C,D :A <h C <iP D <r B.

Proof. By Theorem 6.3, there exists an automaton C with A <H C <B B.
Next, Theorem 7.2 yields the required automaton D with C <P D <R B, which
proves (1). The proof of (2) is similar, but uses Proposition 5.6. O

The following theorem states that <P is a partial order on the class of automata
with fin, considered modulo isomorphism of reachable subautomata. The proof
is analogous to that of Theorem 6.6, the corresponding result for normed history
relations.

THEOREM 7.4. Suppose A and B have fin, A <p B and B <p A. Then the
reachable subautomata of A and B are isomorphic.

8. DECIDABILITY

Thus far, our exposition has been purely semantic. In the words of Abadi and
Lamport [1991]: “We have considered specifications, but not the languages in which
they are expressed. We proved the existence of refinement mappings, but said
nothing about whether they are expressible in any language.” In this section, we
move to the syntactic world and discuss some decidability issues. To this end we
have to fix a language for defining automata. The language below can be viewed
as a simplified version of the IOA language of Garland et al. [1997].

We assume an underlying assertion language L which is a first-order language
over interpreted symbols for expressing functions and predicates over some con-
crete domains such as integers, arrays, and lists of integers. If X is a set of (typed)
variables then we write F (X) and E (X) for the collection of formulas and expres-
sions, respectively, in which variables from X may occur free. An automaton can
be described syntactically by first specifying a finite set X of variables, referred
to as the state variables. For each state variable x we assume the presence of a
copy x', called the primed version of x. We write X ' for the set {x' |x G X } and,
if $ is a formula then we write $' for the formula obtained from $ by replacing
each occurrence of a state variable by its primed version. The set of states of the
automaton is defined as the set of all valuations of the state variables in X . The set
of initial states is specified by a predicate in F (X), called the initial condition. The
actions are specified via a finite number of action names with, for each action name
a, a finite list v of variables called the parameters of a. We assume {v} n X = 0.
The set of actions of the automaton is defined as the union, for each action name
a, of all tuples a(d), where d is a valuation of the parameters v in their respective
domains. The transition relation is specified by providing, for each action name a
with parameters v, a transition predicate in F (X U{v} UX "), i.e., a predicate that
may contain action parameters as well as primed and unprimed state variables.

Example 8.1. Below we specify a FIFO channel in IOA syntax [Garland et al.
1997].

automaton Channel
states
buffer: Seq[Nat]

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

26 . D. Griffioen and F. Vaandrager

initial condition
buffer = {3}
actions
send(v: Nat),
receive(v: Nat),
tau
transitions
action send(v)
predicate buffer’ = buffer |- v
action receive(v)
predicate buffer ~= {} /\ v = head(buffer)
/\ buffer’ = tail(buffer)
action tau
predicate false

In IOA datatypes are specified using the Larch specification language [Guttag and
Horning 1993]. In the example we use the standard finite list datatype, with {}
denoting the empty list, |- denotes the opereration that appends an element to
the end of a list, etc. Transitions are specified in a standard predicative style.
The example automaton has no t transitions, which is specified by the transition
predicate false.

This piece of syntax defines an automaton A with

— states (A) = N*,
— start(A) = {A},
— acts (A) = {send(d), receive(d) |d G N}U {t}

— steps (A) is the least set that contains the following elements, for all a G N* and
d G N,

send(d)

— >
a receive(d) a
da — > a

Now assume that we have specified two automata A and B, using state variables
x and vy, respectively. Let X = {x} and Y = {y}. Assume X nY = 0.

A step refinement from A to B can be specified by a formula of the form 0Ay = e,
with 0 G E(X) and e a list of expressions in E (X) that matches y in terms of
length and types. In this formula, the first conjunct defines the domain of the step
refinement whereas the second conjunct defines a map from states of A to states of
B by specifying, for each state variable of B, its value in terms of the values of the
state variables of A.

A normed forward simulation can be described by a predicate in F(X UY)
together with, for each action type a with parameters v, an expression in E (X U
{v} UX "UY) that specifies the norm function. In practice, norm functions often
only depend on the states of B, which means that they can be specified by means
of a single expression in E (Y).

Example 8.2. Consider the following specification, essentially just the chaining
of two FIFO channels.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 27

automaton TwoChannels
states
bufferl: Seq[Nat],
buffer2: Seq[Nat]
initial condition
bufferl = {3 /\ buffer2 = {3}
actions
send(v: Nat),
receive(v: Nat),
tau
transitions
action send(v)
predicate bufferl” = bufferl |- v /\ buffer2’ = buffer2
action receive(v)
predicate buffer2 ~= {} /\ v = head(buffer2)
/\ buffer2’” = tail(buffer2) /\ bufferl” = bufferl
action tau
predicate bufferl ~= {} /\ bufferl’” = tail(bufferl) /\
/\ buffer2’” = buffer2 |- head(bufferl)

Let B be the automaton denoted by this specification. It is easy to prove that the
formula below (where || denotes concatenation of lists) defines a step refinement
from B to the automaton A of Example 8.1.

buffer = buffer2 || bufferl

It is also routine to check that this formula together with the norm on states of B
defined by

if bufferl ~= {3 /\ buffer2 = {} then | else 0
defines a normed forward simulation from A to B .

We will now show that, under some reasonable (sufficient but certainly not nec-
essary) assumptions, it is in fact decidable whether a given predicate/expression
indeed corresponds to a step refinement or normed forward simulation. Assume
that automaton A is described using state variables x, initial condition p0 and, for
each action name a, a transition predicate pa. Likewise, assume that automaton B
is described using state variables y, initial condition 00 and, for each action name
a, a transition predicate 0a. Assume further that each action name a of A is also
an action name of B, and that a has the same parameters in both A and B. Write
Pa for the list of parameters of a. We require that PT = 0.

Suppose that we want to check whether a formula p = 0>y = e denotes a step
refinement. This is equivalent to proving validity of the following formula:

o o
A (fo>p ~» 00
> pa>0 0
D

t\a=T Pa>P>P => O0a
A PT>p>p = 0TVy

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

28 . D. Griffioen and F. Vaandrager

In this formula, the first conjunct asserts that the function is defined for start states
of A; the second conjunct that start states of A are mapped onto start states of B;
the third conjunct that if the function is defined for the source of a transition then
it is also defined for the target state of a transition; and the two final conjuncts
encode the transfer condition. Thus checking whether a partial function is a step
refinement from A to B is decidable if the partial function as well as A and B can
all be expressed within a fragment of L for which tautology checking is decidable.

Next suppose that we want to check whether a formula p together with norm
expressions na, for each action name a, denotes a normed forward simulation from
A to B. In order to turn this into a decidable question, we have to make some ad-
ditional assumptions about the specification of B. We assume that B has finitely
many start states2, which are listed explicitly, i.e., we require that the initial con-
dition 0 0 is of the form

00= Vy=eo0 ©))
iflo

where 10 is a finite index set and, for each i, el is a list of closed terms. In addition
we assume that in any state and for any given value of the action parameters, only
finitely many transitions are possible in B, which are listed explicitly. Formally we
require that, for each action type a, transition predicate 0 a is of the form

0a= V (xI>y"'= ea) (4)
ifla

where lais a finite index set and, for each i, xhis a formula in F (Y U{Pa}) and ef is
a list of expressions in E (Y U{Pa}). Basically, x & gives the precondition of the i-th
instance of transition a and y' = eg specifies the effect oftaking it. Both assumption
(3) and (4) are satisfied by most automaton specifications that one encounters in
practice. In particular, the assumptions hold for the channels specified in Examples
8.1 and 8.1. Only specifications that involve a nondeterministic choice that is not
a priori bounded fall outside of our format. An example of this, described by
Sogaard-Andersen et al. [1993], is a FIFO channel in which a crash action may
result in the loss of an arbitrary subset of the messages contained in a buffer.
Under assumptions (3) and (4), we can eliminate the existential quantifiers that
occur in the definition of a normed forward simulation, and checking the conditions
in this definition becomes equivalent to proving validity of the following formula:

PO~ v plel/y]
iflo

A Pa>p ~ V (xh>p'\ya/y'])V V (XT>p[eT/y] >naleT/y] < na)

a=T i€la i€lr

PT>p ~ p'yly'lv V (XT >p'[eT/y']) v \J (xT >p[eT/y] > UteT/y] < Ut)
iElr iElr

2This assumption can be relaxed if we assume that the value of certain state variables of B is
fully determined by p and the state of A: for those state variables the initial value can be left
unspecified.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 29

If this formula can be expressed within a fragment of L for which tautology checking
is decidable then it is decidable whether p together with expressions na constitutes
a normed forward simulation. It is easy to see that a similar result can also be
obtained for normed history variables. Thus far, however, we have not been able
to come up with plausible syntactic restrictions, applicable in practical cases, that
ensure decidability of normed backward simulations and/or normed prophecy rela-
tions. It is for instance not clear how one can eliminate the existential quantifier in
the formula that asserts that in a normed backward simulation for each state of A
there exists a related state of B. We think this constitutes an interesting area for
future research.

Our decidability results for step refinements and normed forward simulations do
not carry over to the refinements and forward simulations as described, for instance,
by Lynch and Vaandrager [1995]. In order to see this, let A be a system with two
states, an initial and a final one, and a single transition labeled halt from the initial
to the final state. Let B be a system that simulates the n-th Turing machine such
that each computation step of the Turing machine corresponds with a r-move, and
that moves via a halt-action to a designated final state ifand only if the computation
of the Turing machine terminates. The function that maps the initial state of A
to the initial state of B and the final state of A to the final state of B is a weak
refinement iff the n-th Turing machine halts. It is straightforward to specify A, B
and the function from states of A to states of B in a decidable logic. Hence it is
undecidable whether a given function is a weak refinement, even in a setting where
the underlying logic is decidable.

9. REACHABILITY

For the sake of simplicity, all definitions of simulations and refinements so far have
been presented without any mention of reachability or invariants. However, in
practical verifications it is almost always the case that first some invariants (prop-
erties that hold for all reachable states) are established for the lower-level and/or
higher-level specification. These invariants are then used in proving the step cor-
respondence. In this section we show how to integrate reachability concerns into
the simulation definitions. More specifically, we present adapted versions of step
refinements, normed forward simulations and normed backward simulations which
include reachability concerns, and discuss their relationship with the original defini-
tions. For examples of the use of these adapted definitions and their formalization
in PVS, we refer to our earlier work [Griffioen 2000].
An adapted step refinement from A to B consists of a partial function r

states(”) N states(B) satisfying the following two conditions:

(1) If s Gstart(®) then s Gdomain(r) and r(s) G start(B).

(2) Ifs—a At > s Gdomain(r) > reachable(A,s) > reachable(B,r(s)) then t G
domain(r) and
@) r(s) =r(t) > a=r,or
(b) r(s) aBr(t).

Clause reachable (A, s) in condition (2) allows reuse of invariants previously estab-
lished for lower-level specification A, whereas clause reachable(B, r(s)) in condition

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

30 . D. Griffioen and F. Vaandrager

(2) makes it possible to reuse known invariants of higher-level specification B. The
adapted definition can easily be seen as a special case of the original definition in
Section 3.1: if r is an adapted step refinement then the restriction r' of r defined

by
s G domain(r') = s G domain(r) > reachable (A, s) > reachable (B,r(s)),

is a regular step refinement. Conversely, any regular step refinement trivially sat-
isfies the conditions of the adapted version.

An adapted normed forward simulation from A to B consists of a relation f C
states () x states(B) and a function n : steps(”) x states(B) " S, for some well-
founded set S, such that:

(1) If s G start(”) then f [s] fl start(B) = 0.

(2) If s~ At > u Gf[s] > reachable(A, s) > reachable(B,u) then
(@ uGfl[t] >a=r,or
(b) 3vGf[t] :u—aByv, or
(c) 3vGfs]:u—"b v > n(s—"t,v) <n(s—"t u).

Again, the clause reachable (A, s) in condition (2) allows us to reuse invariants
that have previously been established for A, whereas clause reachable (B, u) in con-
dition (2) permits reuse of invariants of B. And again the adapted definition
can easily been seen as a special case of the original definition (in Section 4):
if (f,n) is an adapted normed forward simulation then the pair (g,n), where
g = f f (reachable(A) x reachable(B)), is a regular normed forward simulation.
Conversely, any regular normed forward simulation trivially is an adapted normed
forward simulation.

An adapted normed backward simulation from A to B consists of a relation b C
states(”) x states(B), a predicate Q C states(B), and a function n : (steps(*) U
start(”)) x states(B)~ S, for some well-founded set S, such that:

(1) If s Gstart(®) > u Gb[s] > Q(u) then

(@) u G start(B), or

(b) 3v Gb[s] :v—"b u > n(s,Vv) <n(s,u) > Q(v).
(2) Ift—a s > u G b[s] > reachable(A,t) > Q(u) then

(@ uGHt] >a=r,or

(b) 3v Gb[t] :v—aB u > Q(v), or

(c) 3v Ghb[s] :v—t>»d u >n(t—" s,v) <n(t—" s,u) > Q(v).
(3) If reachable (A, s) then 3u G b[s] : Q(u).

Clause reachable(A,t) in condition (2) allows us to reuse invariants that have pre-
viously been established for A, and clause Q(u) in condition (2) permits reuse of
invariants of B. Note that by a trivial inductive argument a backward simulation
can never relate a reachable state of A to a non-reachable state of B. Thus we can
safely restrict the range of any backward simulation by all invariants proven for B .
To this end predicate Q has been included in the definition of the adapted normed
backward simulation, even though strictly speaking (1) Q need not be an invariant,
and (2) Q can always be eliminated by restricting the range of b. Once more the
adapted definition is a special case of the original definition (in Section 5): if (b, n) is

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 31

an adapted normed backward simulation then (b,n) is also a regular normed back-
ward simulation from the automaton A', that restricts A to its reachable states,
to the automaton B', that restricts B to the states in Q. Conversely, any regular
normed backward simulation trivially is an adapted normed backward simulation
with Q = states(B).

We leave it up to the reader to work out adapted versions of the normed history
and prophecy relations.

Acknowledgement

We thank Marielle Stoelinga and Ling Cheung for spotting mistakes (and proposing
fixes) in an earlier version of this paper, and Jan Willem Klop for discussions that
led us to Theorem 6.6.

REFERENCES

Abadi, M. AND Lamport, L. 1991. The existence of refinement mappings. Theor. Comput.
Sci. 82, 2, 253-284.

Ariola, Z and Klop, J. 1996. Equational term graph rewriting. Fundamenta Informati-
cae 26, 3/4, 207-240. Extended version as University of Oregon Technical Report CIS-TR-
95-16.

Baier, C. AND Stoelinga, M. 2000. Norm functions for probabilistic bisimulations with delays.
In Proceedings of 3rd International Conference on Foundations of Science and Computation
Structures (FOSSACS), Berlin, Germany, March 2000, J. Tiuryn, Ed. Lecture Notes in Com-
puter Science, vol. 1784. Springer-Verlag, 1-16.

Basten, T. 1996. Branching bisimilarity is an equivalence indeed! Information Processing Let-
ters 58, 3, 141-147.

Bensalem, S., Ganesh, V., Lakhnech, Y., noz, C. M., Owre, S., Ruess, H., Rishby, J., Rusu,
V., Saidi, H., Shankar, N., Singerman, E., and Tiwari, A. 2000. An overview of SAL.
In LFM 2000: Fifth NASA Langley Formal Methods Workshop, C. M. Holloway, Ed. NASA
Langley Research Center, Hampton, VA, 187-196.

Bensalem, S., Lakhnech, Y., AND Saidi, H. 1996. Powerful techniques for the automatic gen-
eration of invariants. In Proceedings of the 8th International Conference on Computer Aided
Verification, New Brunswick, NJ, USA, R. Alur and T. Henzinger, Eds. Lecture Notes in Com-
puter Science, vol. 1102. Springer-Verlag, 323-335.

Browne, M., Clarke, E., AND GRUMBERG, 0. 1988. Characterizing finite Kripke structures in
propositional temporal logic. Theor. Comput. Sci. 59, 1,2, 115-131.

De Nicola, r. AND Vaandrager, F. 1995. Three logics for branching bisimulation. Journal of
the ACM 42, 2 (Mar.), 458-487.

Devillers, M., Griffioen, W., ANDM iller, 0. 1997. Possibly infinite sequences: A comparative
case study. In 10th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs™97), E. Gunter and A. Felty, Eds. Lecture Notes in Computer Science, vol. 1275.
Springer-Verlag, 89-104.

Devillers, M., Griffioen, W., Romijn, J., and Vaandrager, F. 2000. Verification of a leader
election protocol: Formal methods applied to IEEE 1394. Formal Methods in System De-
sign 16, 3 (June), 307-320.

Garland, s. Lynch, N, and Vaziri, M. 1997 IOA: A language for speci-
fiying, programming, and validating distributed systems. Available through URL
http://larch.lcs.mit.edu:8001/~garland/ioaLanguage.html.

Gawlick, r., Segala, r., SOGAARD-Andersen, J., AND Lynch, N. 1993. Liveness in timed
and untimed systems. Tech. Rep. MIT/LCS/TR-587, Laboratory for Computer Science, MIT,
Cambridge, MA. Dec.

Ginzburg, a. 1968. Algebraic Theory of Automata. Academic Press, New York - London.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

http://larch.lcs.mit.edu:8001/~garland/ioaLanguage.html

32 . D. Griffioen and F. Vaandrager

Glabbeek, r. v. and Weijland, W. 1996. Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43, 3, 555-600.

Griffioen, W. 2000. Studies in computer aided verification of protocols. Ph.D.
thesis, University of Nijmegen. Postscript and PVS sources available via
http: /mww. cs .kun.nl/ita/former.members/davidg/.

Griffioen, W. and Vaandrager, F. 1998. Normed simulations. In Proceedings of the 10th
International Conference on Computer Aided Verification, Vancouver, BC, Canada, A. Hu
and M. Vardi, Eds. Lecture Notes in Computer Science, vol. 1427. Springer-Verlag, 332-344.

Groote, J. A\D Springintveld, J. 1995. Focus points and convergent process operators — a
proof strategy for protocol verification. Report CS-R9566, Department of Software Technology,
CWI, Amsterdam. Nov.

Guttag, J. AND Horning, J. 1993. Larch: Languages and Tools for Formal Specification.
Springer-Verlag.

Helmink, L., Sellink, M., and Vaandrager, F. 1994. Proof-checking a data link protocol.
In Proceedings International Workshop TYPES™3, Nijmegen, The Netherlands, May 1993,
H. Barendregt and T. Nipkow, Eds. Lecture Notes in Computer Science, vol. 806. Springer-
Verlag, 127-165.

Jonsson, b. 1985. A model and proof system for asynchronous networks. In Proceedings of
the 4th Annual ACM Symposium on Principles of Distributed Computing, Minaki, Ontario,
Canada. 49-58.

Jonsson, b. 1987. Compositional verification of distributed systems. Ph.D. thesis, Department
of Computer Systems, Uppsala University. DoCS 87/09.

Jonsson, b. 1990. On decomposing and refining specifications of distributed systems. In Pro-
ceedings REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formal-
ism, Correctness, Mook, The Netherlands, May/June 1989, J. de Bakker, W. d. Roever, and
G. Rozenberg, Eds. Lecture Notes in Computer Science, vol. 430. Springer-Verlag, 361-387.

Jonsson, b. 1991. Simulations between specifications of distributed systems. In Proceedings
CONCUR 91, Amsterdam, J. Baeten and J. Groote, Eds. Lecture Notes in Computer Science,
vol. 527. Springer-Verlag, 346-360.

Jonsson, b. 1994. Compositional specification and verification of distributed systems. ACM
Trans. Program. Lang. Syst. 16, 2 (Mar.), 259-303.

Klarlund, N. AND Schneider, F. 1989. Verifying safety properties using infinite-state automata.
Tech. Rep. 89-1039, Department of Computer Science, Cornell University, Ithaca, New York.
Klarlund, N. AND Schneider, F. 1993. Proving nondeterministically specified safety properties

using progress measures. Information and Computation 107, 1 (Nov.), 151-170.

Knuth, D. 1997. Fundamental Algorithms. The Art of Computer Programming, vol. 1. Addison-
Wesley, Reading, Massachusetts. Third edition.

Lakhnech, Y., Bensalem, s., Berezin, s., and Owre, S. 2001. Incremental verification by
abstraction. In Proceedings of the International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Genova, Italy, T. Margaria and W. Yi, Eds. Lecture
Notes in Computer Science, vol. 2031. Springer-Verlag.

Lamport, L. 1983. What good is temporal logic? In Information Processing 83, R. Mason, Ed.
North-Holland, 657-668.

Lynch, N. 1996. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fransisco,
California.

Lynch, N. and Tuttle, M. 1987. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing.
137-151. A full version is available as MIT Technical Report MIT/LCS/TR-387.

Lynch, N. and Vaandrager, F. 1995. Forward and backward simulations, I: Untimed systems.
Information and Computation 121, 2 (Sept.), 214-233.

Lynch, N. and Vaandrager, F. 1996. Forward and backward simulations, Il: Timing-based
systems. Information and Computation 128, 1 (July), 1-25.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

A Theory of Normed Simulations . 33

Manna, Z., Browne, A., Sipma, H., AND Uribe, T. 1998. Visual abstraction for temporal
verification. In Proceedings AMAST 98, A. Haeberer, Ed. Lecture Notes in Computer Science,
vol. 1548. Springer-Verlag, 28-41.

Milner, r. 1971. An algebraic definition of simulation between programs. In Proceedings 2nd
Joint Conference on Artificial Intelligence. BCS, 481-489. Also available as Report No. CS-205,
Computer Science Department, Stanford University, February 1971.

Milner, r. 1989. Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs.

Mueller, o. 1998. A verification environment for i/o automata based on formalized meta-theory.
Ph.D. thesis, Technical University of Munich.

Namjoshi, K. 1997. A simple characterization ofstuttering bisimulation. In Proceedings 17th Con-
ference on Foundations of Software Technology and Theoretical Computer Science, Kharag-
pur, India, S. Ramesh and G. Sivakumar, Eds. Lecture Notes in Computer Science, vol. 1346.
Springer-Verlag, 284-296.

Nipkow, T. AND Slind, k. 1995. 1/O automata in Isabelle/HOL. In Types for Proofs and
Programs, P. Dybjer, B. Nordstrom, and J. Smith, Eds. Lecture Notes in Computer Science,
vol. 996. Springer-Verlag, 101-119.

Owicki, S. AND Gries, d. 1976. An axiomatic proof technique for parallel programs. Acta
Inf. 6, 4, 319-340.

Owre, S., Rushby, J., Shankar, N., and Henke, F. v. 1995. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software
Engineering 21, 2 (Feb.), 107-125.

Roever, W. D. A\D Engelhardt, k. 1998. Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge Tracts in Theoretical Computer Science 47. Cambridge
University Press.

Sistla, A. 1991. Proving correctness with respect to nondeterministic safety specifications. Inf.
Process. Lett. 39, 1 (July), 45-49.

SOgaard-Andersen, J., Garland, s., Guttag, J., Lynch, N., and Pogosyants, A. 1993.
Computer-assisted simulation proofs. In Proceedings of the 5th International Conference on
Computer Aided Verification, Elounda, Greece, C. Courcoubetis, Ed. Lecture Notes in Com-
puter Science, vol. 697. Springer-Verlag, 305-319.

SOGAARD-Andersen, J., Lynch, N., and Lampson, b. 1993. Correctness of communication
protocols - a case study. Tech. Rep. MIT/LCS/TR-589, Laboratory for Computer Science,
MIT, Cambridge, MA. Nov.

Stark, E. 1988. Proving entailment between conceptual state specifications. Theor. Comput.
Sci. 56, 135-154.

Wolper, P. 1997. The meaning of formal: from weak to strong formal methods. Springer
International Journal on Software Tools for Technology Transfer 1, 1-2, 6-8.

Received July 2000; revised September 2002 and April 2003; accepted April 2003

ACM Transactions on Computational Logic, Vol. V, No. N, May 2003.

