300 research outputs found

    Age-Related Disparities in Trauma Center Access for Severe Head Injuries Following the Release of the Updated Field Triage Guidelines

    Get PDF
    Objective: In 2006, the American College of Surgeons’ Committee on Trauma and the Center for Disease Control released field triage guidelines with special consideration for older adults. Additional considerations for direct transport to a Level I or II trauma center (TC) were added in 2011, reflecting perceived undertriage to TCs for older adults. We examined whether age-based disparities in TC care for severe head injury decreased following introduction of the 2011 revisions. Methods: A pre-post design analyzing the 2009 and 2012 Healthcare Cost and Utilization Project State Emergency Department Databases (SEDD) and State Inpatient Databases (SID) with multivariable logistic regressions considered changes in (1) the trauma designation of the emergency department where treatment was initiated and (2) transfer to a TC following initial treatment at a non-TC. Results: Compared with adults aged 18–44 years, after multivariable adjustment, in both years TC care was less likely for adults aged 45–64 years (OR: 0.76 in 2009 and 0.74 in 2012), aged 65–84 years (OR: 0.61 and 0.59), and aged 85+ years (OR: 0.53 and 0.56). Between 2009 and 2012, the likelihood of TC care increased for all age groups, with the largest increase among those aged 85+ years (OR = 1.18), which was statistically different (p = .02) from the increase among adults aged 18–44 years (OR = 1.12). The analysis of transfers yielded similar results. Conclusions: Although patterns of increased TC treatment for all groups with severe head trauma indicate improvements, age-based disparities persisted

    Chemogenetic Inactivation of Ventral Hippocampal Glutamatergic Neurons Disrupts Consolidation of Contextual Fear Memory

    Get PDF
    Synaptic consolidation is a process thought to consolidate memory in the brain. Although lesion studies have mainly implicated the hippocampus (HPC) in this process, it is unknown which cell type(s) or regions of the HPC might be essential for synaptic consolidation. To selectively and reversibly suppress hippocampal neuronal activity during this process, we developed a new Gi-DREADD (hM4Di) transgenic mouse for in vivo manipulation of neuronal activity in freely moving animals. We found that CA1 pyramidal neurons could be dose-dependently inactivated by clozapine-n-oxide (CNO). Inactivation of hippocampal neurons within 6 h immediately after conditioned fear training successfully impaired the consolidation of contextual memory, without disturbing cued memory. To anatomically define the brain subregion critical for the behavioral effects, hM4Di viral vectors were transduced and selectively expressed in the glutamatergic neurons in either the dorsal or ventral HPC. Significantly, we found that selective inactivation of ventral but not dorsal glutamatergic hippocampal neurons suppressed the synaptic consolidation of contextual memory

    Identifying and addressing barriers to implementing core electronic health record use metrics for ambulatory care: Virtual consensus conference proceedings

    Get PDF
    Precise, reliable, valid metrics that are cost-effective and require reasonable implementation time and effort are needed to drive electronic health record (EHR) improvements and decrease EHR burden. Differences exist between research and vendor definitions of metrics. PROCESS:  We convened three stakeholder groups (health system informatics leaders, EHR vendor representatives, and researchers) in a virtual workshop series to achieve consensus on barriers, solutions, and next steps to implementing the core EHR use metrics in ambulatory care. CONCLUSION:  Actionable solutions identified to address core categories of EHR metric implementation challenges include: (1) maintaining broad stakeholder engagement, (2) reaching agreement on standardized measure definitions across vendors, (3) integrating clinician perspectives, and (4) addressing cognitive and EHR burden. Building upon the momentum of this workshop\u27s outputs offers promise for overcoming barriers to implementing EHR use metrics

    Exploring subtle land use and land cover changes: a framework for future landscape studies

    Get PDF
    UMR AMAP, équipe 3International audienceLand cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling

    Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

    Get PDF
    The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming

    Identification of Antifungal Compounds Active against Candida albicans Using an Improved High-Throughput Caenorhabditis elegans Assay

    Get PDF
    Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans–C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay

    Adult Male Mice Emit Context-Specific Ultrasonic Vocalizations That Are Modulated by Prior Isolation or Group Rearing Environment

    Get PDF
    Social interactions in mice are frequently analysed in genetically modified strains in order to get insight of disorders affecting social interactions such as autism spectrum disorders. Different types of social interactions have been described, mostly between females and pups, and between adult males and females. However, we recently showed that social interactions between adult males could also encompass cognitive and motivational features. During social interactions, rodents emit ultrasonic vocalizations (USVs), but it remains unknown if call types are differently used depending of the context and if they are correlated with motivational state. Here, we recorded the calls of adult C57BL/6J male mice in various behavioral conditions, such as social interaction, novelty exploration and restraint stress. We introduced a modulator for the motivational state by comparing males maintained in isolation and males maintained in groups before the experiments. Male mice uttered USVs in all social and non-social situations, and even in a stressful restraint context. They nevertheless emitted the most important number of calls with the largest diversity of call types in social interactions, particularly when showing a high motivation for social contact. For mice maintained in social isolation, the number of calls recorded was positively correlated with the duration of social contacts, and most calls were uttered during contacts between the two mice. This correlation was not observed in mice maintained in groups. These results open the way for a deeper understanding and characterization of acoustic signals associated with social interactions. They can also help evaluating the role of motivational states in the emission of acoustic signals

    Rickettsiae Induce Microvascular Hyperpermeability via Phosphorylation of VE-Cadherins: Evidence from Atomic Force Microscopy and Biochemical Studies

    Get PDF
    The most prominent pathophysiological effect of spotted fever group (SFG) rickettsial infection of microvascular endothelial cells (ECs) is an enhanced vascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the morbidity and mortality in severe cases. To date, the cellular and molecular mechanisms by which SFG Rickettsia increase EC permeability are largely unknown. In the present study we used atomic force microscopy (AFM) to study the interactive forces between vascular endothelial (VE)-cadherin and human cerebral microvascular EC infected with R. montanensis, which is genetically similar to R. rickettsii and R. conorii, and displays a similar ability to invade cells, but is non-pathogenic and can be experimentally manipulated under Biosafety Level 2 (BSL2) conditions. We found that infected ECs show a significant decrease in VE-cadherin-EC interactions. In addition, we applied immunofluorescent staining, immunoprecipitation phosphorylation assay, and an in vitro endothelial permeability assay to study the biochemical mechanisms that may participate in the enhanced vascular permeability as an underlying pathologic alteration of SFG rickettsial infection. A major finding is that infection of R. montanensis significantly activated tyrosine phosphorylation of VE-cadherin beginning at 48 hr and reaching a peak at 72 hr p.i. In vitro permeability assay showed an enhanced microvascular permeability at 72 hr p.i. On the other hand, AFM experiments showed a dramatic reduction in VE-cadherin-EC interactive forces at 48 hr p.i. We conclude that upon infection by SFG rickettsiae, phosphorylation of VE-cadherin directly attenuates homophilic protein–protein interactions at the endothelial adherens junctions, and may lead to endothelial paracellular barrier dysfunction causing microvascular hyperpermeability. These new approaches should prove useful in characterizing the antigenically related SFG rickettsiae R. conorii and R. rickettsii in a BSL3 environment. Future studies may lead to the development of new therapeutic strategies to inhibit the VE-cadherin-associated microvascular hyperpermeability in SFG rickettsioses
    • …
    corecore