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The future response of the Antarctic ice sheet to rising temperatures
remains highly uncertain. A useful period for assessing the sensitivity
of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky),
which experienced warmer polar temperatures and higher global
mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea
level cannot be fully explained by Greenland Ice Sheet melt (∼2 m),
ocean thermal expansion, and melting mountain glaciers (∼1 m),
suggesting substantial Antarctic mass loss was initiated by warming
of Southern Ocean waters, resulting from a weakening Atlantic me-
ridional overturning circulation in response to North Atlantic surface
freshening. Here, we report a blue-ice record of ice sheet and envi-
ronmental change from theWeddell Sea Embayment at the periphery
of the marine-based West Antarctic Ice Sheet (WAIS), which is under-
lain bymajor methane hydrate reserves. Constrained by awidespread
volcanic horizon and supported by ancient microbial DNA analyses,
we provide evidence for substantial mass loss across the Weddell Sea
Embayment during the LIG, most likely driven by ocean warming and
associated with destabilization of subglacial hydrates. Ice sheet mod-
eling supports this interpretation and suggests that millennial-scale
warming of the Southern Ocean could have triggered a multimeter
rise in global sea levels. Our data indicate that Antarctica is highly
vulnerable to projected increases in ocean temperatures and may
drive ice–climate feedbacks that further amplify warming.

Antarctic ice sheets | marine ice sheet instability (MISI) | paleoclimatology |
polar amplification | tipping element

The projected contribution of the Antarctic ice sheet to 21st-
century global mean sea level (GMSL) ranges from negligible

(1) to several meters (2, 3). Valuable insights into the response of

ice sheets to warming may be gained from the Last Interglacial
(LIG) (or Marine Isotope Stage [MIS] 5e in marine sediment
records; 129,000 to 116,000 y before present or 129 to 116 ky) (4–
9). This period experienced warmer polar temperatures and
higher GMSL (+6 to 9 m, possibly up to 11 m) (4, 10–13) relative
to present day, and was the most geographically widespread
expression of high sea level during a previous warm period (4,
10). LIG sea level cannot be fully explained by Greenland Ice
Sheet melt (∼2 m) (8), ocean thermal expansion, and melting
mountain glaciers (∼1 m) (4), implying substantial Antarctic
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mass loss (3, 4, 14, 15). Half a century ago, John Mercer was the
first to propose that the marine-based West Antarctic Ice Sheet
(WAIS) is vulnerable to a warming atmosphere through loss of
buttressing ice shelves and may have made a significant contri-
bution to global sea level during the LIG (5–7). Recent work has
further demonstrated that extensive deep, marine-based sectors
of the East Antarctic Ice Sheet (EAIS) may have accelerated
melting, thus contributing to higher LIG sea levels (14). While
an isotopic signature of a relatively cool LIG climate preserved
in the Mount Moulton blue ice field (16) may be explained by

substantial WAIS mass loss (17), no direct physical evidence has
yet been identified (4, 18). Temperature estimates derived from
climate model simulations provide an indirect measure of change
but typically suggest ∼1 °C less warming than proxy-based re-
constructions (4, 8, 19). When used to drive ice sheet models,
these climate anomalies are not sufficient to remove the floating
ice shelves that buttress ice flow from central Antarctica (20). In
an attempt to bypass these problems, ice sheet models have been
driven by a wide range of prescribed climate scenarios; however,
these suggest widely different sensitivities dependent on model
physics and parameterization (21, 22), with >2 °C (and in some
instances >4 °C) ocean warming required for the loss of the
WAIS, exceeding paleoclimate estimates (3, 9, 20, 23) and dif-
ferent sensitivities of Antarctic ice sheet sectors (18, 24, 25).
Here, we report a high-resolution record of environmental

change and ice flow dynamics from the Patriot Hills Blue Ice
Area (BIA), exposed in Horseshoe Valley (Ellsworth Mountains;
Methods) (Fig. 1A). Horseshoe Valley is a locally sourced com-
pound glacier system (i.e., with negligible inflow) that is but-
tressed by, but ultimately coalesces with, the Institute Ice Stream
via the Horseshoe Valley Trough, making the area sensitive to
dynamic ice sheet changes across the broader Weddell Sea
Embayment (WSE) (26). Due to strong prevailing katabatic
airflow, an extensive BIA (more than 1,150 m across) has formed
to the leeward side of the Patriot Hills, where ancient ice is
drawn up from depth within Horseshoe Valley (Fig. 1E). Re-
gional airborne and detailed local ground-penetrating radar
(GPR) surveys show a remarkably coherent series of dipping
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Fig. 1. Location and age profile of the Patriot Hills
BIA. (A) Location of Antarctic ice and marine records
discussed in this study and austral spring–summer
(October to March) SST trends (over the period
1981 to 2010; HadISST data). (B) Trace gas (circles),
tephra (triangles), and boundary (square) age solu-
tions for surface ice along transect B–B′ relative to an
arbitrary datum along the transect (displayed in D).
The dashed lines denote unconformities D0–D2 at
their surface expression. (C) Basal topography of the
Ellsworth Subglacial Highlands (West Antarctica)
with the locations of airborne radio-echo sounding
transect A–A′ (displayed in E) and Rutford Ice Stream
(IS) (29). The Horseshoe Valley, Independence, and
Ellsworth troughs are given by the initials HV, IT, and
ET, respectively. (D) The location of Patriot Hills in
Horseshoe Valley (LIMA background image) with the
BIA climate line (marked by transect B–B′), dominant
ice flow direction, and distance to grounding line. (E)
Airborne radio-echo sounding cross-section of ice
within Horseshoe Valley, Independence, and Ells-
worth troughs (modified from ref. 29). Digitization
highlights basal topography (brown), lower basal ice
unit (gray), and upper basal ice unit (red) as well as
internal stratigraphic features (black for observed,
dashed for inferred, and purple for best estimate).

Significance

Fifty years ago, it was speculated that the marine-based West
Antarctic Ice Sheet is vulnerable to warming and may have
melted in the past. Testing this hypothesis has proved chal-
lenging due to the difficulty of developing in situ records of ice
sheet and environmental change spanning warm periods. We
present a multiproxy record that implies loss of the West
Antarctic Ice Sheet during the Last Interglacial (129,000 to
116,000 y ago), associated with ocean warming and the release
of greenhouse gas methane from marine sediments. Our ice
sheet modeling predicts that Antarctica may have contributed
several meters to global sea level at this time, suggesting that
this ice sheet lies close to a “tipping point” under projected
warming.
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(24 to 45°) layers, broken by two discontinuities, which represent
isochrons across the Patriot Hills BIA, extending thousands of
meters into Horseshoe Valley. A “horizontal ice core” across the
BIA spans the time intervals 0 to 80 ky and 130 to 134 ky
(Methods and SI Appendix, Fig. S5) constrained by analysis of
trace gases and geochemically identified volcanic layers exposed
across the transect, which have been Bayesian age modeled against
the recently compiled continuous 156-ky global greenhouse gas time
series (CO2, CH4, and N2O) (27) on the AICC2012 age scale (28)
(Fig. 1B and Methods). The record is located 50 km inland from
the modern grounding line of the Filchner–Ronne Ice Shelf in
the WSE (29) and close to the Rutford Ice Stream, one of the
largest methane hydrate reserves identified in Antarctica [total
organic carbon estimated to be 21,000 Gt (30), equivalent to
∼2,000 y of the current carbon emission rate of 10 GtC/year
(https://www.co2.earth/global-co2-emissions)]. Today, precipi-
tation at the site is delivered via storms originating from the
South Atlantic or Weddell Sea (31). Crucially, the Ellsworth
Mountains also lie in a sector of the continent that is highly re-
sponsive to isostatic rebound under a scenario of substantial
WAIS mass loss, potentially preserving ice from around the time
of the LIG in small valley glaciers and higher ground areas (32).

The Patriot Hills Record
The isotopic series of δD across the Patriot Hills BIA exhibits a
coherent record of relatively low values between 18 and 80 ky,
consistent with a glacial-age sequence (Fig. 2E). Below these
layers and at the periphery of zones of higher ice flow (29), we
find an older unit of ice exposed at the surface expressed by a
step change to enriched (interglacial) isotopic values (Fig. 2E
and SI Appendix, Fig. S7), implying proximal warmer conditions
and reduced sea ice extent (33). Importantly, we identify a dis-
tinct tephra horizon near the boundary of this older unit of ice,
which, based on major and trace element geochemical finger-
printing (Fig. 3 and SI Appendix, Fig. S11), is correlated to a
volcanic ash from the penultimate deglaciation (Termination II)
referred to as Tephra B in marine sediments on the West Ant-
arctic continental margin (34) and identified at 1,785.14-m depth
in the Dome Fuji ice core, where it is dated to 130.7 ± 1.8 ky
(AICC2012 timescale) (28, 33, 34). The start of the oldest section
of the sequence is dated here to 134.1 ± 2.2 ky, consistent with
modeling studies, airborne radio-echo sounding lines, and GPR
profiles, which imply older ice exists at depth in the Ellsworth
Mountains (29, 32) (Fig. 1 B–E).
The combined tephra and trace gas analyses suggest a ∼50-ky

hiatus after Termination II (130.1 ± 1.8 ky). Radio-echo sounding
surveys across the WSE have identified a large subglacial basin
comprising landforms reflecting restricted, dynamic, marine-
proximal alpine glaciation, with hanging tributary valleys feed-
ing an overdeepened Ellsworth Trough (35). The extensive na-
ture of the subglacial features implies substantial and repeated
mass loss of the marine sections of the WAIS (presumably
through the Pleistocene), with the ice margin some 200 km in-
land of present day (35). However, the timing of most recent
retreat is currently unknown. While previous surface exposure
dating in the region has suggested that the WAIS contribution to
global sea level rise during warmer periods was limited to 3.3 m
above present (36), relatively short-duration interglacial periods
may have resulted in near-complete deglaciation (35). Previous
work has interpreted erosional features D1 and D2 in the Patriot
Hills BIA to be a consequence of extensive ice surface lowering
in Horseshoe Valley (up to ∼500 m since the Last Glacial
Maximum, 21 ky) and more exposure of katabatic-enhancing
nunataks, resulting in increased wind scour (26, 37). While this
scenario may explain unconformity D0, previous work has
demonstrated Horseshoe Valley and the wider WSE to be highly
sensitive to periods of ice stream advance or retreat in the last
glacial cycle and Holocene, with dramatic reductions in surface

elevation (26, 37–39), changes that may result in more than just
increased wind scour. Importantly, the head of Horseshoe Valley
is an overdeepened trough (down to ∼2,000 m below sea level),
while toward the mouth of the valley, a subglacial ridge is found
at ∼200 m below current sea level with an ice thickness of some
750 m (Methods and SI Appendix, Fig. S3), allowing the isolation
and stagnation of ice in Horseshoe Valley over multiple millennia.
Furthermore, glaciological investigations assessing the impact of
ice shelf loss on glaciers along the Antarctic Peninsula provide
important insights into the preservation of ice, albeit on a smaller
scale. The 2002 Larsen B ice shelf collapse led to many of the
tributary glaciers abruptly changing from a convex to a concave
profile (cross-section) (40), with relict ice left isolated on the up-
per flanks of the valleys (41). These scenarios are consistent with
extensive grounding line retreat across the inner shelf of the Weddell
Sea and associated substantial ice loss across the wider WSE (29).
The ice at Patriot Hills therefore appears to preserve a record

of glacier flow in Horseshoe Valley up to the moment when the
Filcher–Ronne Ice Shelf collapsed, after which the sequence
remained isolated due to regional ice flow reconfiguration for
multiple millennia; a situation that persisted until the ice surface
had risen sufficiently to enable the regional ice flow to recover
sometime during late MIS 5. We cannot, however, discount the
possibility that there were one or more cycles of ice mass gain
and loss through MIS 5. The presence of a discrete older ice unit
along the flanks of the Ellsworth Mountains (29) (Fig. 1 and SI
Appendix, Fig. S2) and the subsequent inferred highly variable
climate and/or sea ice extent across the wider WSE (SI Appendix,
Figs. S7 and S13) imply the preservation of ice from MIS 6/5
(Termination II) and 5/4 transitions in Horseshoe Valley. Our
data provide evidence for substantial mass loss across the WSE
during the LIG.

Ocean Warming
What could be the cause of this ice loss in the South Atlantic
sector of the Southern Ocean? Recent work has proposed that
the iceberg-rafted Heinrich 11 event between 135 and 130 ky
(during Termination II) may have significantly reduced North
Atlantic Deep Water (NADW) formation and shut down the
Atlantic meridional overturning circulation (AMOC) (42),
resulting in net heat accumulation in the Southern Hemisphere
(the bipolar seesaw pattern of northern cooling and southern
warming) (43, 44) (Fig. 4A). Under this scenario, surface cooling
during Heinrich 11 increased the northern latitudinal temperature
gradient and caused a southward migration of the Intertropical
Convergence Zone and midlatitude Southern Hemisphere west-
erly airflow (14, 45). Importantly, Heinrich 11 was probably one of
the largest of the iceberg-rafting events over the last 140 ky (in-
cluding H-1 and H-2) and during a time of likely weakened
AMOC (42). In the Southern Ocean, the associated northward
Ekman transport of cool surface waters (something akin to today;
Fig. 1A) was likely compensated by increased delivery of relatively
warm and nutrient-rich Circumpolar Deep Water (CDW) toward
the Antarctic margin (14, 34, 43, 45, 46), potentially leading to
enhanced thermal erosion of ice at exposed grounding lines (43,
47). This interpretation is supported by the enriched benthic fo-
raminifera 13C values into the LIG (46), a proxy for the influence
of NADW on CDW in the south, implying northern (warmer)
waters were reaching far south for much of this period (and a
cause of persistent loss of ice volume) (Fig. 2I). The unambiguous
precise correlation between the Patriot Hills ice and West Ant-
arctic marine records (34) afforded by the Termination II tephra
demonstrates that the warming recorded in the BIA is coincident
with a major, well-documented peak in marine temperatures and
productivity around the Antarctic continent and in the Southern
Ocean (34, 45, 46) (Fig. 2). The subsequent delivery of large volumes
of associated freshwater into the Southern Ocean during the LIG
would have reduced Antarctic Bottom Water (AABW) production
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(46), resulting in increased deepwater formation in the North
Atlantic (43, 48, 49) (Fig. 4C). Recent modeling results suggest
that increased heat transport beneath the ice shelves can drive ex-
tensive grounding-line retreat, triggering substantial drawdown of
the Antarctic ice sheet (2, 14, 20) (Fig. 4B). Of concern, warming of

the ocean cavity in the WSE is projected to increase during the 21st
century (50).
With Southern Ocean warming and concurrent ice sheet re-

treat, the large methane reservoirs in Antarctic sedimentary basins
(e.g., Rutford Ice Stream) could have become vulnerable to release

R
el

at
iv

e 
se

a 
le

ve
l (

m
) 0

-50

-100

-300

-200

D
om

e F
uji

-480

-460

-440

-420

-400

400

600

800

231P
a/ 230T

h,
B

erm
uda R

ise

0.05

0.10

N
G

R
IP

-45

-40

-35

40 100 140120806020

B
io

g.
 o

pa
l f

lu
x 

(g
* c

m
-2

*k
yr

-1
)

O
D

P
 1

09
4

0

5

10

15
2

1 2 3 4 5 5e TII 6MIS

Holocene average

Calendar years (kyr)

CH4-consuming
marine bacteria (%)

LIG Dome Fuji tephra 
and W Antarctic 

-250

-350

G
lobal C

H
4  (ppb)

High global sea level and 
reduced Antarctic ice volume

A
M

O
C High

Slow Sluggish or absent AMOC

Antarctic
continental

margin

High calcareous 
microfossil content

Peak
productivity

A

B

C

D

E

F G

H

P
P

Weddell Sea grounding line retreat 
(hiatus in Patriot Hills)

Tephra

H11
H1 H2 H3 H4 H5 H6

P
at

ri
o

t 
H

ill
s

ODP 1094

ODP 1089

I

D
om

e 
F

uj
i

-480

-460

-440

-420

-400

LIG tephra in Patriot Hills, 
Dome Fuji tephra and 
W Antarctic 

B
enthic

Patriot Hills 

-0.9
-0.6
-0.3
0
0.3

-1.5
-1.2

140130120

Calendar years (kyr)

Fig. 2. Climate, ocean circulation, and sea level changes over the past 140 ky. (A) δ18O record from the North Greenland (NGRIP) ice core (106, 107). (B)
Bermuda Rise 231Pa/230Th data (reversed axis; 1σ uncertainty) with dashed horizontal line denoting production ratio of 0.093 marking sluggish/absent AMOC
(42). Selected North Atlantic Heinrich (H) events and reduced AMOC shown. (C) Biogenic opal flux from ODP Site 1094 (53.2°S) as a measure of wind-driven
upwelling in the Southern Ocean (45). (D) Comparison between the recently compiled global atmospheric methane time series (red line; 2σ envelope) (27)
with the methane record from the West Antarctic Patriot Hills (black circles with 1σ uncertainty; open circles mark anomalously high-concentration data
excluded from age model; Methods). (E) The Patriot Hills record. Pie chart representation (circle and segments) of percentage methane-utilizing bacteria in
16S rRNA samples from Patriot Hills; crosses denote absence of these bacteria (Methods). Triangles denote the presence of geochemically identified tephra
layers in the Patriot Hills transect, with δD (and mean Holocene; blue envelope 1σ) values. The gray shading denotes the timing of the surface elevation
change across the WSE as indicated by the hiatus in the Patriot Hills sequence and inferred substantial Antarctic ice mass loss, consistent with the reported
divergence of the isotopic signal observed between the horizontal Mount Moulton ice core record from the WAIS and East Antarctic ice cores (16, 17, 33), and
peak global sea level (10). (F) Temporal changes in ocean productivity with peak productivity (PP) (green shading) during interglacials and subsequent en-
hanced content of calcareous microfossils in Antarctic continental margin sediments (red shading) (34). The dashed black line shows position of tephra
identified in the Patriot Hills (−340 m), Dome Fuji (1,785.14 m), and Tephra B in marine sediments from the West Antarctic continental margin. (G) East
Antarctic Dome Fuji δ18O record (28, 33). (H) Reconstructed relative sea level curve with 2σ envelope (10). The yellow shading highlights the timing of iceberg-
rafted Heinrich debris event 11 (H11), when large amounts of iceberg-rafted debris were deposited in the North Atlantic (43) and the 231Pa/230Th ratio on
Bermuda Rise shifted toward the production ratio of 0.093, representative of sluggish or absent AMOC (42); the circled numbers 1 and 2 denote enhanced
upwelling-induced warming in the Southern Ocean and Antarctic ice mass loss, respectively. (I) Close-up of Termination II and the onset of the LIG high-
lighting the high-precision correlation enabled by the Patriot Hills tephra (∼130 ky) and the carbon isotopic composition of benthic foraminifera from ODP
Site 1089 and ODP Site 1094 (46) (Fig. 1A). The cream shading highlights the inferred collapse of the AABW reported from ODP 1094 (46). Dashed vertical line
denotes LIG tephra in Patriot Hills, Dome Fuji, and West Antarctic continental margin.
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(30) and may have contributed to elevated atmospheric levels
through the LIG (8, 27) (Fig. 2D). High-latitude open water and
sea ice are rich in microbial communities, components of which
may be collected by passing storms and delivered onto the ice
sheet (e.g., prokaryotes, DNA), offering insights into offshore
environmental processes (51, 52). To investigate environmental
changes prior to and after the ice sheet reconfiguration recorded
in the Patriot Hills BIA, we applied an established ancient DNA
methodology and sequencing to provide a description of ancient
microbial species preserved within the ice (Methods). Methane-
utilizing microorganisms were found in three samples along the
Patriot Hills transect and were absent from other samples on the
transect and laboratory controls. While such microbes are not
obligate methylotrophs and can be present in nonmethane-
dominated environments (53), they would be expected to be at
very different abundances to what we find. The most striking
feature of the Patriot Hills BIA genetic record was detected
immediately prior to inferred ice loss, where Methyloversatilis
microbes dominated the detectable microbial diversity (∼130 ky)
(Fig. 2E and SI Appendix, Fig. S15). Methyloversatilis was only
found in high abundance in this sample (with trace amounts
identified at ∼22 ky). Crucially, Methyloversatilis are facultative
methylotrophs and live on single and multicarbon sources (54),
consistent with elevated levels of CH4 and active methane oxidation
by Methyloversatilis or other methanotrophic taxa in marine sedi-

ments or in the water column during the end of Termination II (SI
Appendix). More work is needed to explore the potential for mi-
crobial methane utilization in this unique environment.

Antarctic Ice Sheet Modeling
The inferred substantial mass loss across the WSE implies a
major role for ocean warming during Termination II and the
LIG. To provide a framework for interpreting ice sheet dynamics
around the Patriot Hills and across Antarctica, we present a
series of temperature sensitivity experiments using the Parallel
Ice Sheet Model, version 0.6.3 (Fig. 5) (2). We report here nine
different simulations that capture a range of ocean and atmo-
spheric warming scenarios (0° to 3 °C). Importantly, the most
comprehensive published high-latitude (≥40° S) network of
quantified sea surface temperature (SST) estimates suggests an
early LIG (∼130 ky) warming of 1.6 ± 0.9 °C relative to present
day (9, 23), providing an upper limit on the sensitivity of the
Antarctic ice sheet to ocean temperatures. The pattern of
circum-Antarctic ocean warming during this time period is not
well established so we assume a spatially uniform warming pat-
tern relative to present day temperatures. Our model time series
illustrates that the majority of ice loss takes place within the first
two millennia, depending on the magnitude of the forcing (Fig. 5
and Table 1). This corresponds to the time period of inferred
loss of marine-based sectors of the ice sheet (Fig. 2), primarily in
West Antarctica. In contrast to some whole-continent models,
our simulations do not include mechanisms by which a grounded
ice cliff may collapse (3), a process that produces considerably
faster and greater ice margin retreat than reported here.
For the 2 °C warmer than present day ocean temperature

scenario (comparable to reconstructed estimates) (9, 23), with no
additional atmospheric warming, our model predicts a contri-
bution to GMSL rise of 3.8 m in the first millennium of forcing
(Fig. 5B). The loss of the Filchner–Ronne Ice Shelf within 200 y
of warming triggers a nonlinear response by removing the but-
tressing force that stabilizes grounded ice across large parts of
the WSE and the EAIS (most notably the Recovery Basin) (Fig.
6 and SI Appendix, Fig. S17). Ongoing slower ice loss sub-
sequently occurs around the margins of East Antarctica, pro-
ducing a sustained contribution to sea level rise. Even for
relatively cool ocean-forced runs, we find the shelves collapse
quickly between the 200-y intervals (SI Appendix, Fig. S18). In-
deed, during the warmer ocean model runs, the shelves disap-
pear too quickly to observe the relevant processes on the
timescale covered by the snapshots. For instance, under the
scenario of 2 °C linear warming, the ice shelves disappear within
600 y of forcing (when temperatures reached between +0.4 and
+0.8 °C). Other modeling studies using a range of different
setups have reported similar rapid losses of the ice shelves during
the onset of the LIG (24, 25). Our results are therefore consis-
tent with an increasing body of evidence that the stability of
Antarctic ice shelves is vulnerable to a relatively low temperature
threshold (2, 24, 25).
Recent work has suggested that the Ellsworth Mountains

would have experienced a relatively large positive isostatic ad-
justment (>200 m) accompanying the loss of the WAIS (24, 25,
32), although the model outputs may be underestimated (25). To
investigate how an evolving ice sheet geometry would manifest
across the wider region, we extracted local ice surface and bed
elevations for the WSE from the model simulation that uses a
preindustrial ice sheet configuration with 2 °C ocean warming
and no atmospheric warming. Fig. 6 A–G illustrates the sequence
of events that take place as the ice sheet evolves. First, loss of the
Filchner–Ronne Ice Shelf in the Weddell Sea triggers a non-
linear response, removing the buttressing force that stabilizes
grounded ice across large parts of the WSE and the EAIS (most
notably the Recovery Basin) (55). The loss of back-stress allows
for an acceleration of grounded ice and a rapid but short-lived

Fig. 3. Average trace element concentrations of Patriot Hills tephra at
−340 m and Tephra B from marine sediment cores PC108 (4.65-m depth) and
PC111 (6.86-m depth) (34) normalized to Primitive Mantle (108). (A) Biplots
show comparison between selected trace element concentrations of the
tephra in the different sequences. Error bars on plots show 2σ of replicate
analyses of MPI-DING StHs6/80-G (87), but errors are typically smaller than
the data symbols (B–E).
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thinning episode (32). At the Patriot Hills, bedrock uplift of
∼30 m over this 0.2-ky period is outpaced by a surface lowering
of ∼75 m, implying a net ice sheet thinning of around 105 m.
Subsequently, regional-scale isostatic uplift elevates both the bed
topography (∼250 m) and ice sheet surface (∼350 m) relative to
the initial configuration. The difference between these two val-
ues reflects positive net mass balance of the ice sheet here
(∼0.055 m/y). After around 2.5 ky, renewed dynamic thinning of
the ice sheet in the Patriot Hills leads to a rapid thinning and
lowering of the ice sheet surface, at a rate exceeding regional-
scale bedrock subsidence (120 m over 0.4 ky, or 0.3 m/y, com-

pared to ∼70 m over 3.2 ky, or 0.022 m/y, respectively) (Fig. 6).
For the 1 and 3 °C warming scenarios, similar spatial losses are
modeled, with GMSL rises of 2.2 and 4.7 m for the first mil-
lennium, respectively (Table 1). Atmospheric warming of the
magnitude suggested by Antarctic cores (>4 °C) (16, 17, 56–58)
adds an additional meter of equivalent global sea level within the
first millennium (SI Appendix, Fig. S19).
Previous work has highlighted the sensitivities of the Ronne–

Filchner and Ross ice shelves to warming under a range of model
setups (3, 18). Recently published transient ice sheet model simu-
lations covering the last glacial–interglacial cycle have investigated a
range of scenarios encompassing different geothermal heat
fluxes, ice shelf calving heights, mantle viscosity values, tempera-
ture and sea level forcing scenarios, etc. (24, 25). Importantly,
these studies recognize the loss of the WAIS forced by warming
across what is relatively narrow LIG temperature peak, with a
maximum bedrock elevation of ∼400 to 650 m, and surface ele-
vation changes of >1,500 m, larger than that reported here.
However, it is important to note that these relatively large esti-
mates are likely influenced by the glacial loading that was expe-
rienced during MIS 6.
The Patriot Hills record is consistent with basin-scale mass loss

early in the LIG (15, 32) as a consequence of regional ice dy-
namic changes and isostatically driven isolation of Horseshoe
Valley from sustained ocean forcing. While some modeling
studies have argued the loss of the Filchner–Ronne Ice Shelf
does not display a strong marine ice sheet instability feedback
(59) and that isostatically driven rebound may halt ice retreat
(18), our results suggest otherwise. Indeed, recent work has
proposed that if mass loss comparable to recent decades is
maintained for as little as 60 y, the WAIS could be irrevocably
destabilized over subsequent millennia through the collapse in the
Amundsen Sea sector, overcoming any isostatically driven re-
bound (60). Future work will be required to undertake large en-
sembles of high-resolution ice sheet model simulations that
capture the full range of ice dynamics, ice–ocean–atmosphere
coupling, MIS 6 ice sheet configuration, and spatial and temporal
temperature evolution across this period to fully capture the un-
certainty associated with LIG mass loss. However, we consider our
ice sheet modeling simulations to be comparable to previous
studies (24, 25) in the magnitude of rate of change and mass loss,
and support the interpretation of the Patriot Hill BIA record. Our
results suggest substantial ice sheet mass loss and flow reconfig-
uration in response to ocean warming, outpacing any bedrock
rebound that might have stabilized the ice sheet (Fig. 6). Fur-
thermore, marine-based ice sheets are particularly vulnerable to
hysteresis effects (61), which could explain the 50-ky hiatus in the
Patriot Hills blue ice record, particularly given the relatively low
modeled temperature threshold (0.5 to 0.7 °C ocean warming) for
ice shelf loss (SI Appendix, Fig. S17).
The evidence for substantial mass loss from Antarctica in the

early LIG has important implications for the future (4, 62). Our
field-based reconstruction and modeling results support a growing
body of evidence that the Antarctic ice sheet is highly sensitive to
ocean temperatures. Driven by enhanced basal melt through in-
creased heat transport into cavities beneath the ice shelves (2, 47),
this process is projected to increase with a weakening AMOC
during the 21st century (50, 63–65), which may lead to other positive
feedbacks such as destabilization of methane hydrate reserves (30).

Methods
Patriot Hills. Site description and geomorphological context. The Patriot Hills BIA
(Horseshoe Valley, Ellsworth Mountains; 80°18′S, 81°21′W) is a slow flowing
(<12 m·y−1) compound glacier system situated within an overdeepened
catchment that coalesces with the Institute Ice Stream at the periphery of
the WSE (29, 37, 66–68) (Fig. 1 and SI Appendix, Figs. S1–S4). Airborne radio-
echo sounding surveys across the Ellsworth Mountains have revealed several
wide (up to 34 km across) and long (260 km) subglacial troughs containing

A

B

C

Fig. 4. Ocean–atmospheric interactions during Termination II and the LIG.
Panels show changing Atlantic meridional overturning circulation (AMOC) in
response to iceberg discharge (A and B) in the North Atlantic (Heinrich event
11) during Termination II and (C) from the Antarctic Ice Sheet (AIS) during
the LIG, with inferred shifts in atmospheric circulation including midlatitude
Southern Hemisphere westerly (crossed circle) airflow and Intertropical
Convergence Zone (ITCZ) (14, 43, 45, 46, 48). The vertical arrows denote CH4

and heat flux associated with Antarctic coastal easterly (dot in circle) and
westerly (crossed circle) airflow (30, 47). AABW, AAIW, CDW, NAIW, and
NADW define Antarctic Bottom Water, Antarctic Intermediate Water, Cir-
cumpolar Deep Water, North Atlantic Intermediate Water, and North At-
lantic Deep Water, respectively.
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ice up to 2,620 m thick (Fig. 1) (29), along the side of which, two radar zones
have been interpreted to indicate layers of ice with contrasting physical
properties, consistent with snow deposited during previous glacial/interglacial
transitions. In contrast to the other troughs across the Ellsworth Mountains,
contemporary ice within the Horseshoe Valley Trough maintains the slowest
average flow speeds of all, at 12 m·a−1 (cf. the main trunk of the Institute Ice
Stream reaches speeds up to 415 m·a−1). This is in large part due to the con-
figuration of the Horseshoe Valley Trough where the ice thickness measures in
excess of 2,000 m at the head of the valley and reduces to ∼1,400 m down-
stream; toward the mouth of the valley, a subglacial ridge is found at ∼200 m
below sea level with the ice thickness some 750 m thick (SI Appendix, Fig. S3)
(69). The new Digital Elevation Model data for the WSE is available at https://
data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/00937. The configuration of
the bed and resulting slow flow in Horseshoe Valley has two major ben-
efits for our study. It allows 1) a long record of ice to accumulate, and 2)
the isolation and preservation of ice during periods of regional and
Antarctic-wide mass loss.

In the lee of a small mountain chain at the end of Horseshoe Valley called
Patriot Hills, strong local katabatic winds descend into the valley from the
polar plateau, ablating the ice sheet surface by up to 170 kg·m−2·y−1 (68). As a
result, ancient ice is drawn up from depth in the Horseshoe Valley Trough to
form an extensive BIA (more than 1,150 m across; SI Appendix, Fig. S4) (31,
37, 38). High-resolution analysis using GPR (37) and isotopes identifies three
distinct unconformities [surface distances relative to an arbitrary transect
datum (31) set at zero]: 247 m (D1), 360 m (D2), and −339 m (D0). Based on
the trace gas, tephra, and isotopic values of the surface ice beyond D0
(closest to Patriot Hills), we interpret this section of the record to be Ter-
mination II in age (see below). No glaciomarine sediments have been iden-
tified at any of the boundaries.

Previous work has interpreted erosional features D1 and D2 in the Patriot
Hills BIA to be a consequence of extensive ice surface lowering in Horseshoe
Valley (up to ∼500 m since the Last Glacial Maximum, 21 ky) and more ex-
posure of katabatic-enhancing nunataks, resulting in increased wind scour
(26, 37). While this scenario may explain unconformity D0, other studies
have demonstrated Horseshoe Valley and the wider WSE to be highly sen-
sitive to periods of rapid ice stream advance or retreat in the last glacial cycle
and Holocene with dramatic reductions in surface elevation (26, 37–39).
Recent work investigating the impact of ice shelf loss on glaciers along the
Antarctic Peninsula provides important insights, albeit on a smaller scale.

The 2002 Larsen B ice shelf collapse led to many of the tributary glaciers
abruptly changing from a convex to a concave profile (40), with relict ice left
isolated on the upper flanks of the valleys (41). Under a scenario of extreme
ice surface lowering arising from ocean warming during the early LIG, the
ice at Patriot Hills preserves a record of glacier flow in the overdeepened
Horseshoe Valley up to the moment when the Filcher–Ronne Ice Shelf col-
lapsed, after which the sequence likely remained isolated for multiple mil-
lennia until the ice surface had risen sufficiently to reincorporate the
isolated ice into the glacier sometime during late MIS 5. The relatively
enriched deuterium and 18O stable isotope values, ancient DNA (notably the
detection of Methyloversatilis microbes in the sample form −340 m in the
Patriot Hills record), and ice sheet modeling are consistent with early off-
shore warming in the south Atlantic and substantial ice mass loss in the early
LIG (34, 46, 62), preserving most (if not all) of the Termination II ice record
during the period represented by the D0 unconformity (see below). We
therefore consider D0 reflects a significant fall in surface elevation and
change in flow direction due to isostatically driven isolation of the valley
during a period of rapid drawdown of the ice streams across the WSE.
Chronology. Chronological control across the transect is provided by a com-
prehensive suite of trace gas samples—carbon dioxide (CO2), methane (CH4)
and nitrous oxides (N2O)—and volcanic tephra horizons. The trace gas
measurements provide a range of possible age solutions against the recently
published 156-ky smoothed global time series for these gas species (27),
which together with the absolute constraints provided by the tephra hori-
zons, allows the development of a robust chronological framework that can
be tied directly to the isotopic series through high-resolution GPR (31, 37) (SI
Appendix, Figs. S6 and S7). A Kovacs 9-cm-diameter ice corer was used to
collect ice for gas and taken from >3-m depth to minimize modern air
contamination and/or alteration (31). The samples were double bagged and
sealed in the field, and transported frozen to the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) ICELAB facility in Melbourne
for the extraction and measurement of trace gases using a modified dry ex-
traction “cheese grater” and cryogenic trapping technique (70, 71). The trapped
air samples were analyzed by gas chromatography, and the trace gas concen-
trations are reported against the calibration scales maintained by CSIRO GASLAB
(72). Where sufficient material was available, duplicates were analyzed.

The presence of visible tephra layers (volcanic ash horizons) provides
additional chronological control for the Patriot Hills BIA. Here, we report two
new tephras from Patriot Hills at 10 and −340 m, both observed as ∼4-cm

Dome 
Fuji

Patriot 
Hills

Mt Moulton Taylor
Glacier

A B

DC

Fig. 5. Modeled Antarctic ice sheet evolution under
idealized forcing scenarios consistent with range of
inferred LIG temperatures. (A) Sea level equivalent
mass loss for ice sheet simulations forced by a range
of air and ocean temperature anomalies relative to
present day. “dT” and “dOT” describe atmospheric
and ocean temperature anomalies, respectively. B–D
show Antarctic Ice Sheet extent and elevation with
2 °C warmer ocean temperatures over time intervals
of 1, 2, and 5 ky, respectively (with no atmospheric
warming); equivalent sea level contribution is given
in the Bottom Left corner of each panel. Locations of
Patriot Hills (Ellsworth Mountains, WAIS) and ice core
records discussed in this study are shown in B. Inset
box in B outlines region shown in Fig. 6.
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units of dispersed shards (SI Appendix, Fig. S9). Shards were extracted by
centrifugation of the melted ice samples and put onto a glass slide for
electron microprobe analysis. The slides were ground and polished using
silica carbide paper and decreasing grades of diamond suspension to expose
fresh sections of glass. Single-grain analyses of 10 oxides were performed on
a Cameca SX-100 electron microprobe at the Tephrochronology Analytical
Unit, University of Edinburgh. See SI Appendix for operating conditions (73);
geochemical results are provided in SI Appendix, Table S1. The shards from
10 m are bimodal, with a basanitic and trachytic composition (SI Appendix,
Fig. S10). The shards from −340 m are trachytic in composition and exhibit a
tightly clustered population (SI Appendix, Fig. S11). Both were compared to
published tephras from across Antarctica (34, 74–84). The 10-m tephra has
the closest match to be the basanite Tephra C from the WAIS Divide at
3,149.12 m (Similarity Coefficient or SC = 0.98), equivalent to 44.9 ± 0.3 ky
(84). The −340-m tephra revealed the closest match to a tephra layer in the
Dome Fuji ice core at 1,785.14-m depth [SC = 0.966; equivalent to 130.7 ±
1.8 ky on the AICC2012 timescale (28, 77, 85); data previously unpublished].

A widespread tephra found in marine sedimentary records on the West
Antarctic continental margin (Tephra B) has been proposed to correlate to the
tephra at Dome Fuji 1,785.14 m, but the correlation has until now remained
only tentative in the absence of any reported geochemistry from the latter (34).
Here, we find the major oxides from Tephra B have a close match to Patriot

Hills −340 m (SC = 0.948), consistent with this interpretation. To test this cor-
relation, we undertook trace element analysis of the glass shards from Patriot
Hills at −340 m. Unfortunately, the Dome Fuji shards were too thin for analysis.
However, we were able to undertake trace element analyses on Tephra B
samples from two marine sediment cores from the West Antarctic continental
margin: PC108 (4.65-m depth) and PC111 (6.86-m depth) (34). Trace element
analysis of volcanic glass shards were performed using an Agilent 8900 triple-
quadrupole inductively coupled plasma mass spectrometry (ICP-MS) (ICP-QQQ)
coupled to a Resonetics 193-nm ArF excimer laser ablation in the De-
partment of Earth Sciences, Royal Holloway, University of London. See SI
Appendix for operating conditions (86). Accuracies of laser ablation ICP-
MS analyses of ATHO-G and reference StHs6/80-G MPI-DING (87) glass were
typically ≤5%. Identical trace element glass chemistries (Fig. 2 and SI Ap-
pendix, Table S2) strongly support the correlation of Patriot Hills −340-m
tephra horizon and the marine West Antarctic Tephra B (34), which is in turn
correlated to Dome Fuji 1,785.14 m (33, 34, 77, 85), and probably originates
from the Marie Byrd Land volcanic province (West Antarctica) (34). The
recognition of a widespread tephra horizon across a large sector of the
Antarctic at the very onset of the LIG provides a time-parallel marker hori-
zon crucial for future studies investigating Antarctic ice sheet mass loss.

To develop an age model, we undertook Bayesian age modeling using a
Poisson process deposition model (P_sequence) in the software package
OxCal, version 4.2.4 (https://c14.arch.ox.ac.uk/) (SI Appendix, Tables S3 and
S4) (88, 89). Using Bayes theorem, the algorithms employed sample possible
solutions with a probability that is the product of the prior and likelihood
probabilities (90, 91). “Calibration curves” with 20-y resolution were de-
veloped for the three trace gas species using the 156-ky time series (27).
Taking into account the deposition model, the reported ages of the tephra
layers, and the common age solutions offered by the trace gas measure-
ments, the posterior probability densities quantify the most probable age
distributions. The available constraints suggest the 1,156-m-long Patriot Hills
BIA transect spans time intervals from ∼134.2 to ∼1.3 ky comprising four key
zones: 4 (−362 to −339 m, equivalent to 134.2 ± 2.2 to 130.1 ± 1.8 ky), 3
(−326 to 240 m, equivalent to 80 ± 6.1 to 22.7 ± 2.8 ky), 2 (240 to 360 m,
equivalent to 22.7 ± 2.8 to 10.3 ± 0.4 ky), and 1 (360 to 800 m, 10.3 ± 0.4 to
1.3 ± 0.6 ky). The Agreement Index (a measure of the agreement between
the model—prior—and the observational data—likelihood) for the Patriot
Hills age model was 101.6% (Aoverall = 71.2%), exceeding the recommended
rejection Agreement Index threshold of 60% (89) (Methods). Regardless of
the relatively large uncertainty associated with the oldest section of ice
(zone 4), the identification of the 130.7 ± 1.8 ky (AICC2012 timescale) Tephra
B/Dome Fuji 1,785.14 m (28, 33, 34) within Patriot Hills at −340 m un-
ambiguously demonstrates the presence of Termination II-age ice. Future
age constraints will inevitably help improve the accuracy and precision of
the age model.
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Fig. 6. Bed (black line) and surface (blue) elevation
changes at Patriot Hills (Ellsworth Mountains, WAIS)
in response to 2 °C warmer ocean temperatures over
a time interval of 5 ky (with no atmospheric warm-
ing) (A). Bed (black line) and surface (blue) elevation
changes vs. time, with phases of the prevalence of
particular processes, such as ice shelf collapse (mint
shaded), regional uplift (gray shaded), and dynamic
thinning (light-brown shaded), highlighted. (B–G)
Selected time slices corresponding to dashed lines in
A showing ice shelf extent and ice sheet elevation in
the Weddell Sea Embayment (WSE) over the first
3 ky. Location of Patriot Hills is marked by the red
square; the gray shaded areas are ice shelf covered,
while the white areas are free of both grounded and
floating glacial ice.

Table 1. Sea level equivalent mass loss (meters) for Antarctic ice
sheet simulations forced over 10,000 y by range of annual air and
ocean temperature anomalies relative to present day

1,000 y 2,000 y 5,000 y 10,000 y

1 °C SST warming
0 °C air 2.2 4.5 5.7 6.0
2 °C air 2.5 5.5 6.5 6.8
4 °C air 2.9 6.5 7.7 8.2

2 °C SST warming
0 °C air 3.8 6.1 6.8 7.8
2 °C air 4.2 6.7 7.9 8.8
4 °C air 4.8 7.6 9.4 11.2

3 °C SST warming
0 °C air 4.7 6.6 7.6 9.4
2 °C air 5.4 7.1 8.5 10.4
4 °C air 5.9 8.1 10.3 12.5

Note: The temperatures applied were applied linearly over the first
1,000 y.
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Isotopes. δD and δ18O isotopic measurements were performed between 1-
and 3-m resolution at James Cook University using diffusion sampling–cavity
ring-down spectrometry (International Atomic Energy WICO Laboratory ID
16139) (92). This system continuously converts liquid water into water vapor
for real-time stable isotope analysis by laser spectroscopy (Picarro L2120-i).
See SI Appendix for operating conditions. To ensure reproducibility, a subset
of samples was rerun at University of New South Wales ICELAB for δD and
δ18O using a Los Gatos Research Liquid Water Isotope Analyzer 24 d (In-
ternational Atomic Energy WICO Laboratory ID 16117). Reported overall
analytical precision on long-term ice core standards is <0.32‰ for δD
and <0.13 for δ18O values. All isotopic values are expressed relative to the
Vienna Standard Mean Ocean Water 2 (VSMOW2). The isotopic datasets
generated in this study are available at the publicly accessible National
Oceanic and Atmospheric Administration (NOAA) Paleoclimatology Data-
base (93) and are available upon request.
Ancient DNA analysis. BIAs offer the opportunity to process large-volume
samples of continental Antarctic ice in the field (∼7 kg per temporal sam-
ple), creating the prospect of generating sufficient microbial concentrations
to permit detailed genetic biodiversity surveys (51, 52) (Fig. 2). To obtain the
samples, a Kovac corer was thoroughly cleaned with 1 to 3% bleach and wiped
with 95% ethanol between core extractions to minimize cross-contamination.
After coring, the top 1 m of ice was removed and discarded, before 1- to 2-m-
long cores were collected in 50-cm sections and immediately placed into clean
PFTE flexible plastic tubing. A heat sealer was used to close the tubing at the
top and bottom of the core. The sealed core was then cut from the remaining
tubing with a sterile blade, and the process was repeated to encase the core in
a second layer of the plastic tubing for protection during transport. Within 1 to
6 h of extraction, the tubing-encased BIA cores were hung inside a large dome
tent to melt via solar radiation over 12 to 24 h, using black plastic bin liners
around the plastic tubing to speed up the process where necessary. The melted
BIA sample was transferred from the inside layer of tubing directly into a hand-
powered vacuum filtration system cleaned with 1 to 3% bleach and ethanol
wipes between samples. For each sample, disposable, sterile, 0.45-μm nitrocel-
lulose filters were used to filter and collect whole bacterial organisms trapped
in the ice during its formation, and reduce noise caused by environmental DNA.
Filters were stored in sterile plastic bags, frozen at −20 °C, and returned to the
Australian Centre for Ancient DNA in Adelaide for ultraclean genetic analysis.

Strict ancient DNA methodologies designed to assess low-biomass mi-
crobial samples were applied (94) (see SI Appendix for detailed methodology
and analysis). DNA from all ice samples as well as extensive sampling and
laboratory controls were extracted using two methods to maximize species
recovery, and 16S ribosomal RNA libraries were amplified in triplicate using
published, universal bacterial and archaeal 16S ribosomal RNA (rRNA) pri-
mers. After DNA sequencing, all individually indexed 16S rRNA libraries were
de-multiplexed, quality filtered, and imported into QIIME, version 1.8.0.
Microbial taxa were identified by comparing sequences to the Geengenes,
version 13, reference database and binning sequences with 97% similar to
known species into operational taxonomic units using closed reference
clustering in UCLUST. Sampling and laboratory contaminants were then
filtered from ice samples, and an average of 30.8% of the reads for each
sample were retained (SI Appendix, Table S5). Retained sequences were then
pooled, and the resulting taxa present in each sample were explored as a
proportion of the total filtered DNA sequencing reads. Alpha and beta di-
versity was explored in QIIME, and importantly, no statistically significant
differences in diversity were detected across the samples. Ancient DNA
sample data are available upon request. While the current sample numbers
limit resolution, our study highlights the untapped potential of BIA genetic
data to exploit cryosphere microbial communities to investigate glaciologi-
cal and environmental change (52).

Ice Sheet Modeling. To investigate former ice sheet dynamics around the
Patriot Hills and across Antarctica, we take a range of values for polar ocean
warming (1 to 3 °C) (9, 11, 23) and employ the Parallel Ice Sheet Model
(PISM), version 0.6.3 (2), an open source 3D, thermomechanical coupled ice
sheet/ice shelf model. PISM employs a stress balance that superposes solu-
tions of the shallow-ice and shallow-shelf equations, and incorporates a
pseudoplastic basal substrate rheology to allow for realistic sliding over
meltwater saturated sediments, a bed deformation model that simulates
mantle dissipation and rebound arising from spatial changes in ice loading
through time (95), and a subgrid basal traction and driving stress in-
terpolation scheme to allow realistic grounding-line motion (96, 97). We
prescribe a mantle viscosity of 1 × 1020 Pa·s, which is lower than the PISM
default (1 × 1021) and intended to capture more accurately the weaker
mantle of West Antarctica, where the majority of mass loss takes place. In
the experiments presented here, we chose not to implement the subgrid

scale interpolated ice shelf basal melt component of this scheme (2, 98).
Calving is parameterized using horizontal strain rates and a minimum
thickness criterion (220 m) (99, 100). Our experimental methodology is
identical to that described in detail elsewhere (101, 102). Climate and ocean
temperature perturbations are applied as spatially uniform linear incre-
ments added to boundary distributions representing present-day conditions.
Linear increases take place between 2,000 and 3,000 model years. The first
2,000 y (no forcing) allow any transient behavior associated with model
initialization to take place in the absence of environmental perturbations,
whereas the subsequent 1,000 y force the ice sheet to evolve slowly to
changes in air and ocean temperature and precipitation. All experiments are
run at a spatial resolution of 20 km.

Reconstructed summer SST anomalies relative to present day (the 1998
World Ocean Atlas) (9) were used to inform on a range of warmer air and
ocean LIG conditions and applied to a stable modern configuration of the
Antarctic Ice Sheet to help interpret the Patriot Hills record (Table 1). A limi-
tation of this approach is that the transient history from the preceding glacial
state is not simulated. However, for the response of the ice shelves, this colder
prehistory should not be critical, and the experiments as performed are di-
rectly relevant for the future of the ice sheets. From these simulations, we
extract data from the first 10 ky. The ice sheet modeling outputs support the
view that ocean (rather than atmosphere) warming was the primary driver of
ice shelf collapse and substantial early LIG mass loss in Patriot Hills and across
large parts of Antarctica (SI Appendix, Fig. S18). With a surface ocean warming
of 2 °C, our simulations suggest isolation and stagnation of ice in Horseshoe
Valley and the loss of the Bungenstock Ice Rise within 400 y of warming
(equivalent to 0.8 °C of warming as a result of the linear temperature increase
over 2,000 to 3,000 model years) (Figs. 5 and 6) and ultimately restricted ice
across the wider WSE (SI Appendix, Fig. S20).

We caution that, for the LIG, subsurface ocean warming is poorly con-
strained. While recent work has suggested that sea surface warming may
propagate to depths important for ice shelves (including embayments) within a
few decades (103, 104), proxy SSTs could instead record “bottom-up”warming
(i.e., as a consequence of circulatory change) and may underestimate the
magnitude of the warming. We however, consider, that warming of +2 °C is
likely to be at the upper end of potential LIG warming scenarios (14) and the
forcing used here in our simulations to be conservative. Recent work using PISM
showed that substantial collapse of WAIS is possible within only a few centuries
even under modest warming (105). Those simulations used a much stiffer bed
parameterization and were run at 5-km resolution. Other studies have suggested
with 5-km resolved PISM simulations that, if mass loss comparable to recent de-
cades is maintained for as little as 60 y, theWAIS could be irrevocably destabilized
over subsequent millennia through the collapse in the Amundsen Sea sector (60),
overcoming any isostatically driven rebound. On the basis of these comparisons,
we can be confident that our inference of substantial mass loss from WAIS
under modest ocean/atmosphere warming is not especially dependent on the
model used, the way that the bed is parameterized, or the resolution of the
simulations. Modeled Antarctic ice sheet contributions to global sea level are
provided in Table 1. The ice sheet model data are available upon request.
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