4,300 research outputs found

    Breadboard stellar tracker system test report

    Get PDF
    BASD has, in the past, developed several unique position tracking algorithms for charge transfer device (CTD) sensors. These algorithms provide an interpixel transfer function with the following characteristics: (1) high linearity; (2) simplified track logic; (3) high gain; and (4) high noise rejection. A previous test program using the GE charge injection device (CID) showed that accuracy for BASD's breadboard was limited to approximately 2% of a pixel (1 sigma) whereas analysis and simulation indicated the limit should be less than 0.5% of a pixel, assuming the limit to be detector response and dark current noise. The test program was conducted under NASA contract No. NAS8-34263. The test approach for that program did not provide sufficient data to identify the sources of error and left open the amount of contribution from parameters such as image distribution, geometric distortion and system alignment errors

    Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis

    Full text link
    Considering a gas of self-propelled particles with binary interactions, we derive the hydrodynamic equations governing the density and velocity fields from the microscopic dynamics, in the framework of the associated Boltzmann equation. Explicit expressions for the transport coefficients are given, as a function of the microscopic parameters of the model. We show that the homogeneous state with zero hydrodynamic velocity is unstable above a critical density (which depends on the microscopic parameters), signaling the onset of a collective motion. Comparison with numerical simulations on a standard model of self-propelled particles shows that the phase diagram we obtain is robust, in the sense that it depends only slightly on the precise definition of the model. While the homogeneous flow is found to be stable far from the transition line, it becomes unstable with respect to finite-wavelength perturbations close to the transition, implying a non trivial spatio-temporal structure for the resulting flow. We find solitary wave solutions of the hydrodynamic equations, quite similar to the stripes reported in direct numerical simulations of self-propelled particles.Comment: 33 pages, 11 figures, submitted to J. Phys.

    Continuum limit of self-driven particles with orientation interaction

    Get PDF
    We consider the discrete Couzin-Vicsek algorithm (CVA), which describes the interactions of individuals among animal societies such as fish schools. In this article, we propose a kinetic (mean-field) version of the CVA model and provide its formal macroscopic limit. The final macroscopic model involves a conservation equation for the density of the individuals and a non conservative equation for the director of the mean velocity and is proved to be hyperbolic. The derivation is based on the introduction of a non-conventional concept of a collisional invariant of a collision operator

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    Inherent noise can facilitate coherence in collective swarm motion

    Get PDF
    Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker–Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker–Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker–Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker–Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data

    The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations

    Full text link
    We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (Ύρk/ρ)2=η12(V1,k/cs)2(\delta\rho_k/\rho)^2 = \eta_1^2 (V_{1,k}/c_s)^2, where Ύρk/ρ\delta\rho_k/\rho is the spectral amplitude of the density perturbations at wave number kk, V1,k2=Vk2/3V_{1,k}^2=V_k^2/3 is the mean square component of the velocity field, csc_s is the sound speed, and η1\eta_1 is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η1≈1±0.3\eta_1\approx 1 \pm 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.Comment: 6 pages, 3 figures, submitted to ApJ Letter

    Synergistic Positive Feedback Mechanisms Underlying Seizure Initiation

    Get PDF
    Investigations into seizure initiation, in recent years, have focused almost entirely upon alterations of interneuronal function, chloride homeostasis, and extracellular potassium levels. In contrast, little attention has been directed toward a possible role of dendritic plateau potentials in the actual ictogenic transition, despite a substantial literature dating back 40 years regarding its importance generally in epilepsy. Here, we argue that an increase in dendritic excitability, coordinated across the population of pyramidal cells, is a key stage in ictogenesis

    Ground‐based measurements of NOx and total reactive oxidized nitrogen (NOy) at Sable Island, Nova Scotia, during the NARE 1993 summer intensive

    Get PDF
    Measurements of NO, NO2, and total reactive oxidized nitrogen (NOy) were added to ongoing measurements of aerosols, CO, and O3 at Sable Island (43°55â€ČN, 60°01â€ČW), Nova Scotia, during the North Atlantic Regional Experiment (NARE) 1993 summer intensive. Ambient levels of NOx and NOy were found to be highly variable, and elevated levels can be attributed to the transport of polluted continental air or presumably to relatively fresh emissions from sources upwind (e.g., ship traffic). The median values for NOx and NOy are 98 and 266 parts per trillion by volume (pptv), respectively. A multiday pollution episode occurred during which elevated NOx and NOy were observed with enhanced levels of O3, CO, and condensation nuclei. Air masses of recent tropical marine origin characterized by low and constant levels of O3 and CO were sampled after Hurricane Emily. The correlation between ozone and CO is reasonably good, although the relation is driven by the single pollution episode observed during the study. The correlation of O3 with NOy and with NOy‐NOx is complicated by the presumed NOy removal processes in the marine boundary layer. Examination of the radiosonde data and comparisons of the surface data with those obtained on the overflying aircraft provide clear indications of vertical stratification above the site
    • 

    corecore