19 research outputs found

    All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0

    Get PDF
    Models of the carbon cycle and climate on geologic (&gt;104-year) timescales have improved tremendously in the last 50 years due to parallel advances in our understanding of the Earth system and the increase in computing power to simulate its key processes. Still, balancing the Earth system's complexity with a model's computational expense is a primary challenge in model development. Simulations spanning hundreds of thousands of years or more generally require a reduction in the complexity of the climate system, omitting features such as radiative feedbacks, shifts in atmospheric circulation, and the expansion and decay of ice sheets, which can have profound effects on the long-term carbon cycle. Here, we present a model for climate and the long-term carbon cycle that captures many fundamental features of global climate while retaining the computational efficiency needed to simulate millions of years of time. The Carbon–H2O Coupled HydrOlOgical model with Terrestrial Runoff And INsolation, or CH2O-CHOO TRAIN, couples a one-dimensional (latitudinal) moist static energy balance model of climate with a model for rock weathering and the long-term carbon cycle. The CH2O-CHOO TRAIN is capable of running million-year-long simulations in about 30 min on a laptop PC. The key advantages of this framework are (1) it simulates fundamental climate forcings and feedbacks; (2) it accounts for geographic configuration; and (3) it is flexible, equipped to easily add features, change the strength of feedbacks, and prescribe conditions that are often hard-coded or emergent properties of more complex models, such as climate sensitivity and the strength of meridional heat transport. We show how climate variables governing temperature and the water cycle can impact long-term carbon cycling and climate, and we discuss how the magnitude and direction of this impact can depend on boundary conditions like continental geography. This paper outlines the model equations, presents a sensitivity analysis of the climate responses to varied climatic and carbon cycle perturbations, and discusses potential applications and next stops for the CH2O-CHOO TRAIN.</p

    Alluvial record of an early Eocene hyperthermal within the Castissent Formation, the Pyrenees, Spain

    Get PDF
    The late Palaeocene to the middle Eocene (57.5 to 46.5 Ma) recorded a total of 39 hyperthermals – periods of rapid global warming documented by prominent negative carbon isotope excursions (CIEs) as well as peaks in iron content – have been recognized in marine cores. Documenting how the Earth system responded to rapid climatic shifts during hyperthermals provides fundamental information to constrain climatic models. However, while hyperthermals have been well documented in the marine sedimentary record, only a few have been recognized and described in continental deposits, thereby limiting our ability to understand the effect and record of global warming on terrestrial systems. Hyperthermals in the continental record could be a powerful correlation tool to help connect marine and continental deposits, addressing issues of environmental signal propagation from land to sea. In this study, we generate new stable carbon isotope data (ή13C values) across the well-exposed and time-constrained fluvial sedimentary succession of the early Eocene Castissent Formation in the south central Pyrenees (Spain). The ή13C values of pedogenic carbonate reveal – similarly to the global records – stepped CIEs, culminating in a minimum ή13C value that we correlate with the hyperthermal event “U” at ca. 50 Ma. This general trend towards more negative values is most probably linked to higher primary productivity leading to an overall higher respiration of soil organic matter during these climatic events. The relative enrichment in immobile elements (Zr, Ti, Al) and higher estimates of mean annual precipitation together with the occurrence of small iron oxide and iron hydroxide nodules during the CIEs suggest intensification of chemical weathering and/or longer exposure of soils in a highly seasonal climate. The results show that even relatively small-scale hyperthermals compared with their prominent counterparts, such as PETM, ETM2, and ETM3, can leave a recognizable signature in the terrestrial stratigraphic record, providing insights into the dynamics of the carbon cycle in continental environments during these events

    An integrated approach to quantifying uncertainties in the remaining carbon budget

    Get PDF
    The remaining carbon budget quantifies the future CO2 emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2 Emissions (TCRE), as well as to non-CO2 climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2 emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2 from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2 emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Clumped isotope constraints on warming and precipitation seasonality in Mongolia following Altai uplift

    No full text
    The timing of surface uplift of the Altai Mountains in northern Central Asia—and the climatic consequences—remains controversial. Today, the Altai Mountains cast a substantial rain shadow, effectively separating the western Gobi Desert and steppe from the Siberian Taiga. We take advantage of this stark climatic gradient to trace the interaction of climate and topography in the lee of the Altai. First, we present new water stable isotope data that demonstrate that—along with this climatic gradient—the Altai modify the ή18O of precipitation via rainout on the leeward side of the range. Second, we present a new paleosol carbonate clumped isotope (Δ47) record that spans much of the Neogene from the immediate lee of the Altai in western Mongolia to address how surface temperatures may have responded to potential uplift during the Neogene. We find that Δ47-derived temperatures have, overall, declined by approximately 7 °C over the course of the Neogene, though the precise timing of this decrease remains uncertain. Third, we pair our Δ47 record with previously published stable isotope data to demonstrate that the timing of decreasing temperatures corresponds with long-term stability in paleosol carbonate ή13C values. In contrast, increases in paleosol carbonate ή13C values—linked to declining vegetation productivity—are correlated with intervals of increasing temperatures. We speculate that declines in vegetation biomass and leaf area changed the partitioning of latent and sensible heat, resulting in rising surface temperatures during Altai uplift. In contrast, long-term Neogene cooling drove the overall decline in surface temperatures. Reconstructed soil water ή18O values (based on carbonate ή18O and Δ47 values) remain surprisingly stable over our Neogene record, differing from our expectation of decreasing ή18O values due to progressive uplift of the Altai Mountains and Neogene cooling. We demonstrate that the shift in precipitation seasonality that likely accompanied Altai uplift obscured any change in lee-side precipitation ή18O that would be expected from surface elevation change alone

    Lake area constraints on past hydroclimate in the western United States: Application to Pleistocene Lake Bonneville

    No full text
    Lake shoreline remnants found in basins of the western United States reflect wetter conditions during Pleistocene glacial periods. The size distribution of paleolakes, such as Lake Bonneville, provide a first-order constraint on the competition between regional precipitation delivery and evaporative demand. In this contribution we downscale previous work using lake mass balance equations and Budyko framework constraints to determine past hydroclimate change for the Bonneville and Provo shoreline extents of Lake Bonneville during the last glacial cycle. For the Bonneville basin we derive new relationships between temperature depression and precipitation factor change relative to modern. These scaling relationships are combined with rebound-corrected estimates of lake area and volume and macrofossil-derived surface temperatures to make quantitative estimates of precipitation and water residence times for the lake. For the Bonneville shoreline (~1552 m) we calculate that, prior to spillover to the Snake River drainage, precipitation rates were ~1.37 times modern, with a water residence time of ~185 years. For the Provo shoreline (1444 m), during the period of steady-state spillover, we calculate that precipitation rates were at least 1.26 times modern, with a residence time of ~102 years. These calculations suggest minimal difference in the hydrologic regime between the Bonneville shoreline highstand and the Provo shoreline stillstand during the last glacial termination. These estimates of hydroclimate scaling relationships differ in sensitivity with previous hydrologic modeling for Lake Bonneville and are complementary to those recently derived from glacier mass balance modeling from the Wasatch Mountains

    Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China

    No full text
    From the latest Cretaceous (late Campanian to Maastrichtian, -75?66 Ma) to the earliest Paleogene, fluctuations in greenhouse climate, inferred primarily from marine sediments, have been linked to volcanism, the Chicxulub asteroid impact, and the Cretaceous-Paleogene (K-Pg) mass extinction. In this paper, we summarize terrestrial climate records in mid-latitude East Asia during the latest Cretaceous and across the K-Pg boundary, based on a multi-proxy approach from the geochronologically well-constrained Sifangtai and Mingshui formations (SMF), accessed by scientific drilling of the Songliao Basin in northeastern China. Evolution of sedimentary environments is characterized by five depositional units of fluvial-deltaic-lacustrine facies. Development of four types of paleosols, including Inceptisols, Aridisols, Vertisols and Alfisols, is interpreted to primarily reflect climatic changes. Correlations among sedimentary facies, paleosol features, illite chemistry index, chemical index of alteration, as well as stable and clumped isotopes of pedogenic carbonates and clay minerals of the SMF validate their reliability for paleoclimate reconstruction, and indicate significant fluctuations in terrestrial climate and sedimentary environment. During global warming intervals possibly triggered by volcanism (e.g. -69.5?68.5 Ma), the Songliao Basin experienced a warmer and wetter climate with stronger terrestrial chemical weathering and more monsoon-derived moisture sourced from the Pacific. In contrast, during global cooling intervals (e.g. -70.5?69.5 Ma and - 68.5?66.5 Ma), the SMF record a cooler and drier climate with less intensive chemical weathering and more westerlies-derived moisture. Across the K-Pg boundary, dramatic changes in land temperatures and hydroclimate correspond to the latest Maastrichtian warming episode (-66.4?66.1 Ma), the transient cooling preceding the K-Pg boundary (-66.1?66.0 Ma), and the earliest Paleogene warming interval (-66.0?65.7 Ma). Temporal correlation of weathering index changes with the Deccan Traps volcanism suggests that volcanism and subsequent intensified weathering played a major role for climatic changes across the K-Pg boundary. The integrated records of sedimentological and geochemical datasets from the Songliao Basin robustly demonstrate that the terrestrial climate of mid-latitude East Asia responded strongly to greenhouse climate changes and to the catastrophic geological events from the latest Cretaceous to the earliest Paleogene
    corecore