4,988 research outputs found
The Gravitational and Electrostatic Fields Far from an Isolated Einstein-Maxwell Source
The exterior solution for an arbitrary charged, massive source, is studied as
a static deviation from the Reissner-Nordstr\o m metric. This is reduced to two
coupled ordinary differential equations for the gravitational and electrostatic
potential functions. The homogeneous equations are explicitly solved in the
particular case , obtaining a multipole expansion with radial
hypergeometric dependence for both potentials. In the limiting case of a
neutral source, the equations are shown to coincide with recent results by
Bondi and Rindler.Comment: 11 pages, revTe
Predictions of selected flavour observables within the Standard Model
This letter gathers a selection of Standard Model predictions issued from the
metrology of the CKM parameters performed by the CKMfitter group. The selection
includes purely leptonic decays of neutral and charged B, D and K mesons. In
the light of the expected measurements from the LHCb experiment, a special
attention is given to the radiative decay modes of B mesons as well as to the
B-meson mixing observables, in particular the semileptonic charge asymmetries
a^d,s_SL which have been recently investigated by the D0 experiment at
Tevatron. Constraints arising from rare kaon decays are addressed, in light of
both current results and expected performances of future rare kaon experiments.
All results have been obtained with the CKMfitter analysis package, featuring
the frequentist statistical approach and using Rfit to handle theoretical
uncertainties.Comment: 8 pages, 1 figure, 2 tables. Typos corrected and discussion of
agreement between SM and data update
Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay
We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
Study of Upsilon(3S,2S) -> eta Upsilon(1S) and Upsilon(3S,2S) -> pi+pi- Upsilon(1S) hadronic trasitions
We study the Upsilon(3S,2S)->eta Upsilon(1S) and Upsilon(3S,2S)->pi+pi-
Upsilon(1S) transitions with 122 million Upsilon(3S) and 100 million
Upsilon(2S) mesons collected by the BaBar detector at the PEP-II asymmetric
energy e+e- collider. We measure B[Upsilon(2S)->eta
Upsilon(1S)]=(2.39+/-0.31(stat.)+/-0.14(syst.))10^-4 and Gamma[Upsilon(2S)->eta
Upsilon(1S)]/Gamma[Upsilon(2S)-> pi+pi-
Upsilon(1S)]=(1.35+/-0.17(stat.)+/-0.08(syst.))10^-3. We find no evidence for
Upsilon(3S)->eta Upsilon(1S) and obtain B[Upsilon(3S)->eta Upsilon(1S)]<1.0
10^-4 and Gamma[Upsilon(3S)->eta Upsilon(1S)]/Gamma[Upsilon(3S)->pi+pi-
Upsilon(1S)]<2.3 10^-3 as upper limits at the 90% confidence level. We also
provide improved measurements of the Upsilon(2S) - Upsilon(1S) and Upsilon(3S)
- Upsilon(1S) mass differences, 562.170+/-0.007(stat.)+/-0.088(syst.) MeV/c^2
and 893.813+/-0.015(stat.)+/-0.107(syst.) MeV/c^2 respectively.Comment: 8 pages, 16 encapsulated postscript figures, submitted to Phys.Rev.
Cross Sections for the Reactions e+e- --> K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events
We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+
K- K+ K-gamma, where the photon is radiated from the initial state. About
84000, 8000, and 4200 fully reconstructed events, respectively, are selected
from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state
defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be
compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No
direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K-
reactions, and we present an update of our previous result with doubled
statistics. Studying the structure of these events, we find contributions from
a number of intermediate states, and extract their cross sections. In
particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma
reaction, and confirm the presence of the Y(2175) resonance in the phi(1020)
f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi
in all three final states and in several intermediate states, as well as the
psi(2S) in some modes, and measure the corresponding product of branching
fraction and electron width.Comment: 35 pages, 42 figure
Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons
We present improved measurements of CP-violation parameters in the decays
, , and , and of
the branching fractions for and . The
results are obtained with the full data set collected at the
resonance by the BABAR experiment at the PEP-II asymmetric-energy factory
at the SLAC National Accelerator Laboratory, corresponding to
million pairs. We find the CP-violation parameter values and
branching fractions where in each case, the first uncertainties are statistical
and the second are systematic. We observe CP violation with a significance of
6.7 standard deviations for and 6.1 standard deviations for
, including systematic uncertainties. Constraints on the
Unitarity Triangle angle are determined from the isospin relations
among the rates and asymmetries. Considering only the solution
preferred by the Standard Model, we find to be in the range
at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Recommended from our members
Measurement of B(B-->X_s {\gamma}), the B-->X_s {\gamma} photon energy spectrum, and the direct CP asymmetry in B-->X_{s+d} {\gamma} decays
The photon spectrum in B --> X_s {\gamma} decay, where X_s is any strange
hadronic state, is studied using a data sample of (382.8\pm 4.2) \times 10^6
e^+ e^- --> \Upsilon(4S) --> BBbar events collected by the BABAR experiment at
the PEP-II collider. The spectrum is used to measure the branching fraction B(B
--> X_s \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08)\times 10^{-4} and the
first, second, and third moments = 2.267 \pm 0.019 \pm 0.032 \pm
0.003 GeV,, )^2> = 0.0484 \pm 0.0053 \pm 0.0077 \pm
0.0005 GeV^2, and )^3> = -0.0048 \pm 0.0011 \pm 0.0011
\pm 0.0004 GeV^3, for the range E_\gamma > 1.8 GeV, where E_{\gamma} is the
photon energy in the B-meson rest frame. Results are also presented for
narrower E_{\gamma} ranges. In addition, the direct CP asymmetry A_{CP}(B -->
X_{s+d} \gamma) is measured to be 0.057 \pm 0.063. The spectrum itself is also
unfolded to the B-meson rest frame; that is the frame in which theoretical
predictions for its shape are made.Comment: 37 pages, 19 postscript figures, submitted to Phys. Rev. D. No
analysis or results have changed from previous version. Some changes to
improve clarity based on interactions with Phys. Rev. D referees, including
one new Figure (Fig. 13), and some minor wording/punctuation/spelling
mistakes fixe
- …