101 research outputs found

    Thermally-activated cation ordering in ZnGa2Se4 single crystals studied by Raman scattering, optical absorption, and ab initio calculations

    Get PDF
    Order-disorder phase transitions induced by thermal annealing have been studied in the ordered-vacancy compound ZnGa2Se4 by means of Raman scattering and optical absorption measurements. The partially disordered as-grown sample with tetragonal defect stannite (DS) structure and I (4) over bar 2m space group has been subjected to controlled heating and cooling cycles. In situ Raman scattering measurements carried out during the whole annealing cycle show that annealing the sample to 400 degrees C results in a cation ordering in the sample, leading to the crystallization of the ordered tetragonal defect chalcopyrite (DC) structure with I (4) over bar space group. On decreasing temperature the ordered cation scheme of the DC phase can be retained at ambient conditions. The symmetry of the Raman-active modes in both DS and DC phases is discussed and the similarities and differences between the Raman spectra of the two phases emphasized. The ordered structure of annealed samples is confirmed by optical absorption measurements and ab initio calculations, that show that the direct bandgap of DC-ZnGa2Se4 is larger than that of DS-ZnGa2Se4.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and MAT2010-19837-C06-06, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). EP-G, AM, and PR-H acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. Finally, the authors would also like to acknowledge M C Moron for stimulating discussions and revision of the present manuscript.Vilaplana Cerda, RI.; Gomis Hilario, O.; PĂ©rez-GonzĂĄlez, E.; Ortiz, HM.; ManjĂłn Herrera, FJ.; RodrĂ­guez-HernĂĄndez, P.; Muñoz, A.... (2013). Thermally-activated cation ordering in ZnGa2Se4 single crystals studied by Raman scattering, optical absorption, and ab initio calculations. Journal of Physics: Condensed Matter. 25(16):165802-1-165802-11. https://doi.org/10.1088/0953-8984/25/16/165802S165802-1165802-112516Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201Yahia, I. S., Fadel, M., Sakr, G. B., & Shenouda, S. S. (2010). Memory switching of ZnGa2Se4 thin films as a new material for phase change memories (PCMs). Journal of Alloys and Compounds, 507(2), 551-556. doi:10.1016/j.jallcom.2010.08.021Yahia, I. S., Fadel, M., Sakr, G. B., Yakuphanoglu, F., Shenouda, S. S., & Farooq, W. A. (2011). Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. Journal of Alloys and Compounds, 509(12), 4414-4419. doi:10.1016/j.jallcom.2011.01.068Hahn, H., Frank, G., Klingler, W., Stïżœrger, A. D., & Stïżœrger, G. (1955). Untersuchungen ïżœber ternïżœre Chalkogenide. VI. ïżœber Ternïżœre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift fïżœr anorganische und allgemeine Chemie, 279(5-6), 241-270. doi:10.1002/zaac.19552790502Errandonea, D., Kumar, R. S., ManjĂłn, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089MorĂłn, M. C., & Hull, S. (2003). Order-disorder phase transition inZn1−xMnxGa2Se4: Long-range order parameter versusx. Physical Review B, 67(12). doi:10.1103/physrevb.67.125208MorĂłn, M. C., & Hull, S. (2005). Effect of magnetic dilution in Zn1−xMnxGa2Se4 (0<x<0.5). Journal of Applied Physics, 98(1), 013904. doi:10.1063/1.1944220MorĂłn, M. C., & Hull, S. (2007). The influence of magnetic dilution in the Zn1−xMnxGa2Se4 series with 0.5<xâ©œ1. Journal of Applied Physics, 102(3), 033919. doi:10.1063/1.2767273Antonioli, G., Lottici, P. P., & Razzetti, C. (1989). The structure of the defect chalcopyrite ZnGa2Se4 studied by EXAFS. physica status solidi (b), 152(1), 39-49. doi:10.1002/pssb.2221520104Haeuseler, H. (1978). FIR- und Ramanspektren von ternĂ€ren Chalkogeniden des Galliums und Indiums mit Zink, Cadmium und Quecksilber. Journal of Solid State Chemistry, 26(4), 367-376. doi:10.1016/0022-4596(78)90171-8Eifler, A., Krauss, G., Riede, V., KrĂ€mer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9Razzetti, C., Lottici, P. P., & Antonioli, G. (1987). Structure and lattice dynamics of nonmagnetic defective AIIBIII2XIV4 compounds and alloys. Progress in Crystal Growth and Characterization, 15(1), 43-73. doi:10.1016/0146-3535(87)90009-8Attolini, G., Bini, S., Lottici, P. P., & Razzetti, C. (1992). Effects of Group III Cation Substitution in the Raman Spectra of Some Defective Chalcopyrites. Crystal Research and Technology, 27(5), 685-690. doi:10.1002/crat.2170270519Takahashi, Y., Namatsu, H., Machida, K., & Minegishi, K. (1993). Measurements of Diffusion Coefficiens of Water in Electron Cryclotron Resonance Plasma SiO2. Japanese Journal of Applied Physics, 32(Part 2, No. 3B), L431-L433. doi:10.1143/jjap.32.l431Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Alonso-GutiĂ©rrez, P., SanjuĂĄn, M. L., & MorĂłn, M. C. (2009). Thermally activated cation ordering in Zn0.5Mn0.5Ga2Se4single crystals studied by Raman scattering. physica status solidi (c), 6(5), 1182-1186. doi:10.1002/pssc.200881218Caldera, D., Morocoima, M., Quintero, M., Rincon, C., Casanova, R., & Grima, P. (2011). On the crystal structure of the defective ternary compound. Solid State Communications, 151(3), 212-215. doi:10.1016/j.ssc.2010.11.031Gomis, O., Vilaplana, R., ManjĂłn, F. J., PĂ©rez-GonzĂĄlez, E., LĂłpez-Solano, J., RodrĂ­guez-HernĂĄndez, P., 
 Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & KrĂ€mer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7SanjuĂĄn, M. L., & MorĂłn, M. C. (2002). Raman study of Zn1−xMnxGa2Se4 diluted magnetic semiconductors: disorder and resonance effects. Physica B: Condensed Matter, 316-317, 565-567. doi:10.1016/s0921-4526(02)00574-4Letoullec, R., Pinceaux, J. P., & Loubeyre, P. (1988). The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Research, 1(1), 77-90. doi:10.1080/08957958808202482Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396ManjĂłn, F. J., Gomis, O., RodrĂ­guez-HernĂĄndez, P., PĂ©rez-GonzĂĄlez, E., Muñoz, A., Errandonea, D., 
 Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201SantamarĂ­a-PĂ©rez, D., Amboage, M., ManjĂłn, F. J., Errandonea, D., Muñoz, A., RodrĂ­guez-HernĂĄndez, P., 
 Tiginyanu, I. M. (2012). Crystal Chemistry of CdIn2S4, MgIn2S4, and MnIn2S4 Thiospinels under High Pressure. The Journal of Physical Chemistry C, 116(26), 14078-14087. doi:10.1021/jp303164kBaroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., 
 Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. doi:10.1088/0953-8984/21/39/395502Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Loudon, R. (1964). The Raman effect in crystals. Advances in Physics, 13(52), 423-482. doi:10.1080/00018736400101051Alonso-GutiĂ©rrez, P., & SanjuĂĄn, M. L. (2008). Ordinary and extraordinary phonons and photons: Raman study of anisotropy effects in the polar modes ofMnGa2Se4. Physical Review B, 78(4). doi:10.1103/physrevb.78.045212ManjĂłn, F. J., MarĂ­, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222Garbato, L., Ledda, F., & Rucci, A. (1987). Structural distortions and polymorphic behaviour in ABC2 and AB2C4 tetrahedral compounds. Progress in Crystal Growth and Characterization, 15(1), 1-41. doi:10.1016/0146-3535(87)90008-6Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Marquina, J., Power, C., Grima, P., Morocoima, M., Quintero, M., Couzinet, B., 
 GonzĂĄlez, J. (2006). Crystallographic properties of the MnGa2Se4 compound under high pressure. Journal of Applied Physics, 100(9), 093513. doi:10.1063/1.2358826Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Gomis, O., Vilaplana, R., ManjĂłn, F. J., SantamarĂ­a-PĂ©rez, D., Errandonea, D., PĂ©rez-GonzĂĄlez, E., 
 Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Lowe-Ma, C. K., & Vanderah, T. A. (1991). Structure of ZnGa2S4, a defect sphalerite derivative. Acta Crystallographica Section C Crystal Structure Communications, 47(5), 919-924. doi:10.1107/s0108270190011192Roa, L., Chervin, J. C., Chevy, A., Davila, M., Grima, P., & GonzĂĄez, J. (1996). Optical Absorption and Raman Scattering Measurements in CuAlSe2 at High Pressure. physica status solidi (b), 198(1), 99-104. doi:10.1002/pssb.222198011

    Efficacy of Anakinra in Refractory Adult-Onset Still's Disease: Multicenter Study of 41 Patients and Literature Review

    Get PDF
    Adult-onset Still's disease (AOSD) is often refractory to standard therapy. Anakinra (ANK), an interleukin-1 receptor antagonist, has demonstrated efficacy in single cases and small series of AOSD. We assessed the efficacy of ANK in a series of AOSD patients. Multicenter retrospective open-label study. ANK was used due to lack of efficacy to standard synthetic immunosuppressive drugs and in some cases also to at least 1 biologic agent. Forty-one patients (26 women/15 men) were recruited. They had a mean age of 34.4 ± 14 years and a median [interquartile range (IQR)] AOSD duration of 3.5 [2-6] years before ANK onset. At that time the most common clinical features were joint manifestations 87.8%, fever 78%, and cutaneous rash 58.5%. ANK yielded rapid and maintained clinical and laboratory improvement. After 1 year of therapy, the frequency of joint and cutaneous manifestations had decreased to 41.5% and to 7.3% respectively, fever from 78% to 14.6%, anemia from 56.1% to 9.8%, and lymphadenopathy from 26.8% to 4.9%. A dramatic improvement of laboratory parameters was also achieved. The median [IQR] prednisone dose was also reduced from 20 [11.3-47.5] mg/day at ANK onset to 5 [0-10] at 12 months. After a median [IQR] follow-up of 16 [5-50] months, the most important side effects were cutaneous manifestations (n = 8), mild leukopenia (n = 3), myopathy (n = 1), and infections (n = 5). ANK is associated with rapid and maintained clinical and laboratory improvement, even in nonresponders to other biologic agents. However, joint manifestations are more refractory than the systemic manifestations

    Relationship between self-reported dietary intake and physical activity levels among adolescents: The HELENA study

    Get PDF
    Background Evidence suggests possible synergetic effects of multiple lifestyle behaviors on health risks like obesity and other health outcomes. Therefore it is important to investigate associations between dietary and physical activity behavior, the two most important lifestyle behaviors influencing our energy balance and body composition. The objective of the present study is to describe the relationship between energy, nutrient and food intake and the physical activity level among a large group of European adolescents. Methods The study comprised a total of 2176 adolescents (46.2% male) from ten European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Dietary intake and physical activity were assessed using validated 24-h dietary recalls and self-reported questionnaires respectively. Analyses of covariance (ANCOVA) were used to compare the energy and nutrient intake and the food consumption between groups of adolescents with different physical activity levels (1st to 3rd tertile). Results In both sexes no differences were found in energy intake between the levels of physical activity. The most active males showed a higher intake of polysaccharides, protein, water and vitamin C and a lower intake of saccharides compared to less active males. Females with the highest physical activity level consumed more polysaccharides compared to their least active peers. Male and female adolescents with the highest physical activity levels, consumed more fruit and milk products and less cheese compared to the least active adolescents. The most active males showed higher intakes of vegetables and meat, fish, eggs, meat substitutes and vegetarian products compared to the least active ones. The least active males reported the highest consumption of grain products and potatoes. Within the female group, significantly lower intakes of bread and cereal products and spreads were found for those reporting to spend most time in moderate to vigorous physical activity. The consumption of foods from the remaining food groups, did not differ between the physical activity levels in both sexes. Conclusion It can be concluded that dietary habits diverge between adolescents with different self-reported physical activity levels. For some food groups a difference in intake could be found, which were reflected in differences in some nutrient intakes. It can also be concluded that physically active adolescents are not always inclined to eat healthier diets than their less active peers.The HELENA study took place with the financial support of the European Community Sixth RTD Framework Programme (Contract FOOD-CT: 2005-007034). This work was also partially supported by the European Union, in the framework of the Public Health Programme (ALPHA project, Ref: 2006120), the Swedish Council for Working Life and Social Research (FAS), the Spanish Ministry of Education (EX-2007-1124, and EX-2008-0641), and the Spanish Ministry of Health, Maternal, Child Health and Development Network (number RD08/0072) (JPRL, LAM)

    Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: The HELENA cross-sectional study

    Get PDF
    Background: Previous studies suggest that dietary protein might play a beneficial role in combating obesity and its related chronic diseases. Total, animal and plant protein intakes and their associations with anthropometry and serum biomarkers in European adolescents using one standardised methodology across European countries are not well documented. Objectives: To evaluate total, animal and plant protein intakes in European adolescents stratified by gender and age, and to investigate their associations with cardio-metabolic indicators (anthropometry and biomarkers). Methods: The current analysis included 1804 randomly selected adolescents participating in the HELENA study (conducted in 2006-2007) aged 12.5-17.5 y (47% males) who completed two non-consecutive computerised 24-h dietary recalls. Associations between animal and plant protein intakes, and anthropometry and serum biomarkers were examined with General linear Model multivariate analysis. Results: Average total protein intake exceeded the recommendations of World Health Organization and European Food Safety Authority. Mean total protein intake was 96 g/d (59% derived from animal protein). Total, animal and plant protein intakes (g/d) were significantly lower in females than in males and total and plant protein intakes were lower in younger participants (12.5-14.9 y). Protein intake was significantly lower in underweight subjects and higher in obese ones; the direction of the relationship was reversed after adjustments for body weight (g/(kg.d)). The inverse association of plant protein intakes was stronger with BMI z-score and body fat percentage (BF%) compared to animal protein intakes. Additionally, BMI and BF% were positively associated with energy percentage of animal protein. Conclusions: This sample of European adolescents appeared to have adequate total protein intake. Our findings suggest that plant protein intakes may play a role in preventing obesity among European adolescents. Further longitudinal studies are needed to investigate the potential beneficial effects observed in this study in the prevention of obesity and related chronic diseases

    Evaluation of iron status in European adolescents through biochemical iron indicators: the HELENA Study

    Get PDF
    BACKGROUND/OBJECTIVES: To assess the iron status among European adolescents through selected biochemical parameters in a cross-sectional study performed in 10 European cities. SUBJECTS/METHODS: Iron status was defined utilising biochemical indicators. Iron depletion was defined as low serum ferritin (SF8.5 mg/l) plus iron depletion. Iron deficiency anaemia (IDA) was defined as ID with haemoglobin (Hb) below the WHO cutoff for age and sex: 12.0 g/dl for girls and for boys aged 12.5-14.99 years and 13.0 g/dl for boys aged ≄15 years. Enzyme linked immunosorbent assay was used as analytical method for SF, sTfR and C-reactive protein (CRP). Subjects with indication of inflammation (CRP >5 mg/l) were excluded from the analyses. A total of 940 adolescents aged 12.5-17.49 years (438 boys and 502 girls) were involved. RESULTS: The percentage of iron depletion was 17.6%, significantly higher in girls (21.0%) compared with boys (13.8%). The overall percentage of ID and IDA was 4.7 and 1.3%, respectively, with no significant differences between boys and girls. A correlation was observed between log (SF) and Hb (r = 0.36, P < 0.01), and between log (sTfR) and mean corpuscular haemoglobin (r = -0.30, P < 0.01). Iron body stores were estimated on the basis of log (sTfR/SF). A higher percentage of negative values of body iron was recorded in girls (16.5%) with respect to boys (8.3%), and body iron values tended to increase with age in boys, whereas the values remained stable in girls. CONCLUSIONS: To ensure adequate iron stores, specific attention should be given to girls at European level to ensure that their dietary intake of iron is adequate.status: publishe

    Ideal cardiovascular health and inflammation in European adolescents: The HELENA study

    Get PDF
    Background and aims Inflammation plays a key role in atherosclerosis and this process seems to appear in childhood. The ideal cardiovascular health index (ICHI) has been inversely related to atherosclerotic plaque in adults. However, evidence regarding inflammation and ICHI in adolescents is scarce. The aim is to assess the association between ICHI and inflammation in European adolescents. Methods and results As many as 543 adolescents (251 boys and 292 girls) from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study, a cross-sectional multi-center study including 9 European countries, were measured. C-reactive protein (CRP), complement factors C3 and C4, leptin and white blood cell counts were used to compute an inflammatory score. Multilevel linear models and multilevel logistic regression were used to assess the association between ICHI and inflammation controlling by covariates. Higher ICHI was associated with a lower inflammatory score, as well as with several individual components, both in boys and girls (p < 0.01). In addition, adolescents with at least 4 ideal components of the ICHI had significantly lower inflammatory score and lower levels of the study biomarkers, except CRP. Finally, the multilevel logistic regression showed that for every unit increase in the ICHI, the probability of having an inflammatory profile decreased by 28.1% in girls. Conclusion Results from this study suggest that a better ICHI is associated with a lower inflammatory profile already in adolescence. Improving these health behaviors, and health factors included in the ICHI, could play an important role in CVD prevention

    Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms

    Get PDF
    The main aim of this work was to assess the influence of the application of power ultrasound during blanching of mushrooms (60 90 °C) on the shrinkage, heat transfer, and quality parameters. Kinetics of mushroom shrinkage was modeled and coupled to a heat transfer model for conventional (CB) and ultrasonic-assisted blanching (UB). Cooking value and the integrated residual enzymatic activity were obtained through predicted temperatures and related to the hardness and color variations of mushrooms, respectively. The application of ultrasound led to an increase of shrinkage and heat transfer rates, being this increase more intense at low process temperatures. Consequently, processing time was decreased (30.7 46.0 %) and a reduction in hardness (25.2 40.8 %) and lightness (13.8 16.8 %) losses were obtained. The best retention of hardness was obtained by the UB at 60 °C, while to maintain the lightness it was the CB and UB at 90 °C. For enhancing both quality parameters simultaneously, a combined treatment (CT), which consisted of a CB 0.5 min at 90 °C and then an UB 19.9min at 60 °C, was designed. In this manner, compared with the conventional treatment at 60 °C, reductions of 39.1, 27.2, and 65.5 % for the process time, hardness and lightness losses were achieved, respectively. These results suggest that the CT could be considered as an interesting alternative to CB in order to reduce the processing time and improve the overall quality of blanched mushrooms.The authors acknowledge the financial support of Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional de La Plata from Argentina, Erasmus Mundus Action 2-Strand 1 and EuroTango II Researcher Training Program and Ministerio de Economia y Competitividad (SPAIN) and the FEDER (project DPI2012-37466-CO3-03).Lespinard, A.; Bon CorbĂ­n, J.; CĂĄrcel CarriĂłn, JA.; Benedito Fort, JJ.; Mascheroni, RH. (2015). Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms. Food and Bioprocess Technology. 8(1):41-53. https://doi.org/10.1007/s11947-014-1373-zS415381Aguirre, L., Frias, J. M., Barry-Ryan, C., & Grogan, H. (2009). Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. Journal of Food Engineering, 91, 280–286.Anantheswaran, R. C., Sastry, S. K., Beelman, R. B., Okereke, A., & Konanayakam, M. (1986). Effect of processing on yield, color, and texture of canned mushrooms. Journal of Food Science, 51(5), 1197–1200.Biekman, E. S. A., Kroese-Hoedeman, H. I., & Schijvens, E. P. H. M. (1996). Loss of solutes during blanching of mushrooms (Agaricus bisporus) as a result of shrinkage and extraction. Journal of Food Engineering, 28(2), 139–152.Biekman, E. S. A., van Remmen, H. H. J., Kroese-Hoedeman, H. I., Ogink, J. J. M., & Schijvens, E. P. H. M. (1997). Effect of shrinkage on the temperature increase in evacuated mushrooms (Agaricus bisporus) during blanching. Journal of Food Engineering, 33(1–2), 87–99.Brennan, M., Le Port, G., & Gormley, R. (2000). Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. Lebensmittel Wissenschaft und Technologie, 33, 285–289.CĂĄrcel, J. A., Benedito, J., RossellĂł, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472–479.CĂĄrcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76, 611–619.CĂĄrcel, J. A., GarcĂ­a-PĂ©rez, J. V., Benedito, J., & Mulet, A. (2011). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110, 200–207.Cheng, X., Zhang, M., & Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatmemts. Ultrasonics Sonochemistry, 20, 674–679.Cliffe-Byrnes, V., & O’Beirne, D. (2007). Effects of gas atmosphere and temperature on the respiration rates of whole and sliced mushrooms (Agaricus bisporus): implications for film permeability in modified atmosphere packages. Journal of Food Science, 72, 197–204.Coskuner, Y., & Ozdemir, Y. (1997). Effects of canning processes on the elements content of cultivated mushrooms (Agaricus bisporus). Food Chemistry, 60(4), 559–562.Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2011). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation. Food and Bioprocess Technology, 4(7), 1197–1204.De Gennaro, L., Cavella, S., Romano, R., & Masi, P. (1999). The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.De la Fuente, S., Riera, E., Acosta, V. M., Blanco, A., & Gallego-JuĂĄrez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, 523–527.Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.Devece, C., RodrĂ­guez-LĂłpez, J. N., Fenoll, J. T., CatalĂĄ, J. M., De los Reyes, E., & GarcĂ­a-CĂĄnovas, F. (1999). Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity. Journal of Agricultural and Food Chemistry, 47(11), 4506–4511.Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82, 261–267.GabaldĂłn-Leyva, C. A., Quintero-Ramos, A., Barnard, J., BalandrĂĄn-Quintana, R. R., TalamĂĄs-Abbud, R., & JimĂ©nez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81, 374–379.Gallego-JuĂĄrez, J. A., Riera, E., De la Fuente, S., RodrĂ­guez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25, 1893–1901.Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234, 1071–1079.GarcĂ­a-PĂ©rez, J. V., CĂĄrcel, J. A., De la Fuente, S., & Riera, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed. Parametric study. Ultrasonics, 44, 539–543.GarcĂ­a-PĂ©rez, J. V., CĂĄrcel, J. A., Riera, E., RossellĂł, C., & Mulet, A. (2012). Intensification of low-temperature drying by using ultrasound. Drying Technology, 30, 1199–1208.GonzĂĄles-Fandos, E., GimĂ©nez, M., Olarte, C., Sanz, S., & SimĂłn, A. (2000). Effect of packaging conditions on the growth of microorganisms and the quality characteristics of fresh mushrooms (Agaricus bisporus) stored at inadequate temperatures. Journal of Applied Microbiology, 89, 624–632.Gormley, T. R. (1975). Chill storage of mushrooms. Journal of the Science of Food and Agriculture, 26, 401–411.Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of thermal inactivation of polyfenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural and Food Chemistry, 60, 500–506.Holdsworth, S. D. (1997). Thermal processing of packaged foods. London: Chapman Hall.HorĆŸić, D., Jambrak, A. R., Belơčak-Cvitanović, A., Komes, D., & Lelas, V. (2012). Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food and Bioprocess Technology, 5, 2858–2870.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007a). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, brussels sprouts and cauliflower. Czech Journal of Food Science, 25, 90–99.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007b). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88–97.Jasinski, E. M., Stemberger, B., Walsh, R., & Kilara, A. (1984). Ultra structural studies of raw and processed tissue of the major cultivated mushroom, Agaricus bisporus. Food Microstructure, 3, 191–196.Jolivet, S., Arpin, N., Wicher, H. J., & Pellon, G. (1998). Agaricus bisporus browning: a review. Mycological Research, 102, 1459–1483.Konanayakam, M., & Sastry, S. K. (1988). Kinetics of shrinkage of mushroom during blanching. Journal of Food Science, 53(5), 1406–1411.Kotwaliwale, N., Bakane, P., & Verma, A. (2007). Changes in textural and optical properties of oyster mushroom during hot air drying. Journal of Food Engineering, 78(4), 1207–1211.Leadley C. & Williams A. (2002). Power ultrasound—current and potential applications for food processing, Review No 32, Campden and Chorleywood Food Research Association.Lespinard, A. R., Goñi, S. M., Salgado, P. R., & Mascheroni, R. H. (2009). Experimental determination and modeling of size variation, heat transfer and quality indexes during mushroom blanching. Journal of Food Engineering, 92, 8–17.Lima, M., & Sastry, S. K. (1990). Influence of fluid rheological properties and particle location on ultrasound-assisted heat transfer between liquid and particles. Journal of Food Science, 55(4), 1112–1115.LĂłpez, P., & Burgos, J. (1995). Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science, 60(3), 551–553.LĂłpez, P., Sala, F. J., Fuente, J. L., Cardon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase lipoxigenase and phenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42(2), 253–256.Mansfield, T. (1962). High temperature-short time sterilization. Proceedings First International Congress on Food Science and Technology, 4, 311–316.Mason T. J. (1998). Power ultrasound in food processing—the way forward. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in Food Processing (pp 103–126). Blackie Academic & Professional, London.McArdle F. J. & Curwen D. (1962). Some factors influencing shrinkage of canned mushrooms. Mushroom Science, 5, 547–557.McArdle, F. J., Kuhn, G. D., & Beelman, R. B. (1974). Influence of vacuum soaking on yield and quality of canned mushrooms. Journal of Food Science, 39, 1026–1028.Mohapatra, D., Bira, Z. M., Kerry, J. P., FrĂ­as, J. M., & Rodrigues, F. A. (2010). Postharvest hardness and color evolution of White button mushrooms (Agaricus bisporus). Journal of Food Science, 75(3), 146–152.Ohlsson, T. (1980). Temperature dependence of sensory quality changes during thermal processing. Journal of Food Science, 45(4), 836–847.Ortuño, C., MartĂ­nez-Pastor, M., Mulet, A., & Benedito, J. (2013). Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae. Food Research International, 51, 474–481.Peralta-Jimenez, L., & Cañizares-MacĂ­as, M. P. (2012). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology, 6, 3522–3529.RodrĂ­guez-LĂłpez, J. N., Fenoll, N. G., Tudela, J., Devece, C., SĂĄnchez-HernĂĄndez, D., De los Reyes, D., et al. (1999). Thermal inactivation of mushroom polyphenoloxidase employing 2450 MHz microwave radiation. Journal of Agricultural Food Chemistry, 47, 3028–3035.Sala, F., Burgos, J., Condon, S., Lopez, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In G. W. Gould (Ed.), New methods of food preservation (1st ed., pp. 176–204). Glasgow: Blackie Academic and professional.SanjuĂĄn, N., Hernando, I., Lluch, M. A., & Mullet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85, 2071–2076.Santos, M. V., & Lespinard, A. R. (2011). Numerical simulation of mushrooms during freezing using the FEM and an enthalpy—Kirchhoff formulation. Heat and Mass Transfer, 47, 1671–1683.Sastry, S. K., Beelman, R. B., & Speroni, J. J. (1985). A three-dimensional finite element model for thermally induced changes in foods: application to degradation of agaritine in canned mushrooms. Journal of Food Science, 50(5), 1293–1299.Sastry, S. K., Shen, G. Q., & Blaisdel, J. L. (1989). Effect of ultrasonic vibration on fluid-to-particule convective heat transfer coefficients. Journal of Food Science, 54(1), 229–230.Sensoy, I., & Sastry, S. K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1–15.Sheen, S., & Hayakawa, K. (1991). Finite difference simulation for heat conduction with phase change in an irregular food domain with volumetric change. International Journal of Heat and Mass Transfer, 34(6), 1337–1346.Simal, S., Benedito, J., Sanchez, E. S., & Rossello, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323–336.SirĂł, I., VĂ©n, C., Balla, C., JĂłnĂĄs, G., Zeke, I., & Friedrich, L. (2009). Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering, 91, 353–362.Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity in foods: a review. Trends in Food Science and Technology, 21, 323–331.Verlinden, B. E., Yuksel, D., Baheri, M., De Baerdemaeker, J., & Van Dijk, C. (2000). Low temperature blanching effect on the changes in mechanical properties during subsequent cooking of three potato cultivars. International Journal of Food Science and Technology, 35, 331–340.Wu, C. M., Wu, J. L.-P., Chen, C.-C., & Chou, C.-C. (1981). Flavor recovery from mushroom blanching water. In G. Charalambous & G. Inglett (Eds.), The quality of foods and beverages: chemistry and technology, vol. 1. New York: Academic Press.Zivanovic, S., & Buescher, R. (2004). Changes in mushroom texture and cell wall composition affected by thermal processing. Journal of Food Science, 69, 44–48

    The relationship between genetic liability, childhood maltreatment, and IQ: findings from the EU-GEI multicentric case–control study

    Get PDF
    This study investigated if the association between childhood maltreatment and cognition among psychosis patients and community controls was partially accounted for by genetic liability for psychosis. Patients with first-episode psychosis (N = 755) and unaffected controls (N = 1219) from the EU-GEI study were assessed for childhood maltreatment, intelligence quotient (IQ), family history of psychosis (FH), and polygenic risk score for schizophrenia (SZ-PRS). Controlling for FH and SZ-PRS did not attenuate the association between childhood maltreatment and IQ in cases or controls. Findings suggest that these expressions of genetic liability cannot account for the lower levels of cognition found among adults maltreated in childhood
    • 

    corecore