234 research outputs found

    The 2008 outburst in the young stellar system ZCMa: I. Evidence of an enhanced bipolar wind on the AU-scale

    Get PDF
    Accretion is a fundamental process in star formation. Although the time evolution of accretion remains a matter of debate, observations and modelling studies suggest that episodic outbursts of strong accretion may dominate the formation of the protostar. Observing young stellar objects during these elevated accretion states is crucial to understanding the origin of unsteady accretion. ZCMa is a pre-main-sequence binary system composed of an embedded Herbig Be star, undergoing photometric outbursts, and a FU Orionis star. The Herbig Be component recently underwent its largest optical photometric outburst detected so far. We aim to constrain the origin of this outburst by studying the emission region of the HI Brackett gamma line, a powerful tracer of accretion/ejection processes on the AU-scale in young stars. Using the AMBER/VLTI instrument at spectral resolutions of 1500 and 12 000, we performed spatially and spectrally resolved interferometric observations of the hot gas emitting across the Brackett gamma emission line, during and after the outburst. From the visibilities and differential phases, we derive characteristic sizes for the Brackett gamma emission and spectro-astrometric measurements across the line, with respect to the continuum. We find that the line profile, the astrometric signal, and the visibilities are inconsistent with the signature of either a Keplerian disk or infall of matter. They are, instead, evidence of a bipolar wind, maybe partly seen through a disk hole inside the dust sublimation radius. The disappearance of the Brackett gamma emission line after the outburst suggests that the outburst is related to a period of strong mass loss rather than a change of the extinction along the line of sight. Based on these conclusions, we speculate that the origin of the outburst is an event of enhanced mass accretion, similar to those occuring in EX Ors and FU Ors.Comment: Accepted for publication in Astronomy and Astrophysics Letter

    Numerical and experimental study of an air-soil heat exchanger for cooling habitat in Sahelian zone: case of Ouagadougou

    Full text link
    The use of air-soil heat exchangers for the cooling home has developed considerably in recent years. In this work, we have leaded the numerical study of an air-soil heat exchanger by using a nodal approach. We have also presented our experimental prototype implemented in Ouagadougou. This study has allowed determining the evolution of air temperature along the exchanger and also validating our numerical results with those of the literature and the experiment

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm

    Double radio peak and non-thermal collimated ejecta in RS Ophiuchi following the 2006 outburst

    Get PDF
    We report Multi-Element Radio-Linked Interferometer Network, Very Large Array, One-Centimetre Radio Array, Very Long Baseline Array (VLBA), Effelsberg and Giant Metrewave Radio Telescope observations beginning 4.5 days after the discovery of RS Ophiuchi undergoing its 2006 recurrent nova outburst. Observations over the first 9 weeks are included, enabling us to follow spectral development throughout the three phases of the remnant development. We see dramatic brightening on days 4 to 7 at 6 GHz and an accompanying increase in other bands, particularly 1.46 GHz, consistent with transition from the initial ‘free expansion’ phase to the adiabatic expansion phase. This is complete by day 13 when the flux density at 5 GHz is apparently declining from an unexpectedly early maximum (compared with expectations from observations of the 1985 outburst). The flux density recovered to a second peak by approximately day 40, consistent with behaviour observed in 1985. At all times the spectral index is consistent with mixed non-thermal and thermal emission. The spectral indices are consistent with a non-thermal component at lower frequencies on all dates, and the spectral index changes show that the two components are clearly variable. The estimated extent of the emission at 22 GHz on day 59 is consistent with the extended east and west features seen at 1.7 GHz with the VLBA on day 63 being entirely non-thermal. We suggest a two-component model, consisting of a decelerating shell seen in mixed thermal and non-thermal emission plus faster bipolar ejecta generating the non-thermal emission, as seen in contemporaneous VLBA observations. Our estimated ejecta mass of 4 ± 2 × 10−7 M⊙ is consistent with a white dwarf (WD) mass of 1.4 M⊙. It may be that this ejecta mass estimate is a lower limit, in which case a lower WD mass would be consistent with the data

    Mid-Infrared interferometry of dust around massive evolved stars

    Get PDF
    We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength band. We also present diffraction-limited observations at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore larger scale structure. We have resolved the dust shells around the late type WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car, the protoypical LBV in our sample, we marginally resolve structure close to the star, distinct from the well-studied detached nebula. The dust shells around the two WC stars show fairly constant size in the 8-13 micron MIDI band, with gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1 and AG Car favors recent or ongoing dust formation. Using the measured visibilities, we build spherically symmetric radiative transfer models of the WC dust shells which enable detailed comparison with existing SED-based models. Our results indicate that the inner radii of the shells are within a few tens of AU from the stars. In addition, our models favor grain size distributions with large (~ 1 micron) dust grains. This proximity of the inner dust to the hot central star emphasizes the difficulty faced by current theories in forming dust in the hostile environment around WR stars. Although we detect no direct evidence for binarity for these objects, dust production in a colliding-wind interface in a binary system is a feasible mechanism in WR systems under these conditions.Comment: 21 pages, 4 tables, 13 figures. Accepted for publication in the Astrophysical Journa

    The 2011 outburst of the recurrent novaT Pyx. Evidence for a face-on bipolar ejection

    Get PDF
    We report on near-IR interferometric observations of the outburst of the recurrent nova T Pyx. We obtained near-IR observations of T Pyx at dates ranging from t=2.37d to t=48.2d after the outburst, with the CLASSIC recombiner, located at the CHARA array, and with the PIONIER and AMBER recombiners, located at the VLTI array. These data are supplemented with near-IR photometry and spectra obtained at Mount Abu, India. Slow expansion velocities were measured (<300km/s) before t=20d (assuming D=3.5kpc). From t=28d on, the AMBER and PIONIER continuum visibilities (K and H band, respectively) are best simulated with a two component model consisting of an unresolved source plus an extended source whose expansion velocity onto the sky plane is lower than 700km/s. The expansion of the Brgamma line forming region, as inferred at t=28d and t=35d is slightly larger, implying velocities in the range 500-800km/s, still strikingly lower than the velocities of 1300-1600km/s inferred from the Doppler width of the line. Moreover, a remarkable pattern was observed in the Brgamma differential phases. A semi-quantitative model using a bipolar flow with a contrast of 2 between the pole and equator velocities, an inclination of i=15^{\circ} and a position angle P.A.=110^{\circ} provides a good match to the AMBER observables (spectra, differential visibilities and phases). At t=48d, a PIONIER dataset confirms the two component nature of the H band emission, consisting of an unresolved stellar source and an extended region whose appearance is circular and symmetric within error bars.These observations are most simply interpreted within the frame of a bipolar model, oriented nearly face-on. This finding has profound implications for the interpretation of past, current and future observations of the expanding nebula.Comment: Accepted Astronomy and Astrophysics (2011

    The molecular and dusty composition of Betelgeuse's inner circumstellar environment

    Get PDF
    The study of the atmosphere of red supergiant stars in general and of Betelgeuse (alpha Orionis) in particular is of prime importance to understand dust formation and how mass is lost to the interstellar medium in evolved massive stars. A molecular shell, the MOLsphere (Tsuji, 2000a), in the atmosphere of Betelgeuse has been proposed to account for the near- and mid-infrared spectroscopic observations of Betelgeuse. The goal is to further test this hypothesis and to identify some of the molecules in this MOLsphere. We report on measurements taken with the mid-infrared two-telescope beam combiner of the VLTI, MIDI, operated between 7.5 and 13.5 μ\mum. The data are compared to a simple geometric model of a photosphere surrounded by a warm absorbing and emitting shell. Physical characteristics of the shell are derived: size, temperature and optical depth. The chemical constituents are determined with an analysis consistent with available infrared spectra and interferometric data. We are able to account for the measured optical depth of the shell in the N band, the ISO-SWS spectrum and K and L band interferometric data with a shell whose inner and outer radii are given by the above range and with the following species: H2O, SiO and Al2O3. These results confirm the MOLsphere model. We bring evidence for more constituents and for the presence of species participating in the formation of dust grains in the atmosphere of the star, i.e. well below the distance at which the dust shell is detected. We believe these results bring key elements to the understanding of mass loss in Betelgeuse and red supergiants in general and bring support to the dust-driven scenario.Comment: 11 pages, 10 figures, accepted for publication in A&

    VSI: the VLTI spectro-imager

    Full text link
    The VLTI Spectro Imager (VSI) was proposed as a second-generation instrument of the Very Large Telescope Interferometer providing the ESO community with spectrally-resolved, near-infrared images at angular resolutions down to 1.1 milliarcsecond and spectral resolutions up to R=12000. Targets as faint as K=13 will be imaged without requiring a brighter nearby reference object. The unique combination of high-dynamic-range imaging at high angular resolution and high spectral resolution enables a scientific program which serves a broad user community and at the same time provides the opportunity for breakthroughs in many areas of astrophysic including: probing the initial conditions for planet formation in the AU-scale environments of young stars; imaging convective cells and other phenomena on the surfaces of stars; mapping the chemical and physical environments of evolved stars, stellar remnants, and stellar winds; and disentangling the central regions of active galactic nuclei and supermassive black holes. VSI will provide these new capabilities using technologies which have been extensively tested in the past and VSI requires little in terms of new infrastructure on the VLTI. At the same time, VSI will be able to make maximum use of new infrastructure as it becomes available; for example, by combining 4, 6 and eventually 8 telescopes, enabling rapid imaging through the measurement of up to 28 visibilities in every wavelength channel within a few minutes. The current studies are focused on a 4-telescope version with an upgrade to a 6-telescope one. The instrument contains its own fringe tracker and tip-tilt control in order to reduce the constraints on the VLTI infrastructure and maximize the scientific return.Comment: 12 pages, to be published in Proc. SPIE conference 7013 "Optical and Infrared Interferometry", Schoeller, Danchi, and Delplancke, F. (eds.). See also http://vsi.obs.ujf-grenoble.f

    Milli-arcsecond astrophysics with VSI, the VLTI spectro-imager in the ELT era

    Get PDF
    Nowadays, compact sources like surfaces of nearby stars, circumstellar environments of stars from early stages to the most evolved ones and surroundings of active galactic nuclei can be investigated at milli-arcsecond scales only with the VLT in its interferometric mode. We propose a spectro-imager, named VSI (VLTI spectro-imager), which is capable to probe these sources both over spatial and spectral scales in the near-infrared domain. This instrument will provide information complementary to what is obtained at the same time with ALMA at different wavelengths and the extreme large telescopes.Comment: 8 pages. To be published in the proceedings of the ESO workshop "Science with the VLT in the ELT Era", held in Garching (Germany) on 8-12 October 2007, A. Moorwood edito

    Chromosphere of K giant stars Geometrical extent and spatial structure detection

    Full text link
    We aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars. We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Halpha and the Ca II infrared triplet line cores. For beta Ceti, spectro-interferometric observations are compared to an non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars. The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of ? Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a differential signal showing the presence of asymmetries in the chromospheres. Conclusions. It is the first time that geometrical extents and structure in the chromospheres of non-binary K giant stars are determined by interferometry. These observations provide strong constrains on stellar atmosphere models.Comment: 10 pages, 12 figure
    corecore