2,547 research outputs found

    Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance

    Get PDF
    This is the author accepted manuscriptAntibiotics are vital in the treatment of bacterial infectious diseases but when released into the environment they may impact non-target organisms that perform vital ecosystem services and enhance antimicrobial resistance development with significant consequences for human health. We evaluate whether the current environmental risk assessment regulatory guidance is protective of antibiotic impacts on the environment, protective of antimicrobial resistance, and propose science-based protection goals for antibiotic manufacturing discharges. A review and meta-analysis was conducted of aquatic ecotoxicity data for antibiotics and for minimum selective concentration data derived from clinically relevant bacteria. Relative species sensitivity was investigated applying general linear models, and predicted no effect concentrations were generated for toxicity to aquatic organisms and compared with predicted no effect concentrations for resistance development. Prokaryotes were most sensitive to antibiotics but the range of sensitivities spanned up to several orders of magnitude. We show reliance on one species of (cyano)bacteria and the ‘activated sludge respiration inhibition test’ is not sufficient to set protection levels for the environment. Individually, neither traditional aquatic predicted no effect concentrations nor predicted no effect concentrations suggested to safeguard for antimicrobial resistance, protect against environmental or human health effects (via antimicrobial resistance development). Including data from clinically relevant bacteria and also more species of environmentally relevant bacteria in the regulatory framework would help in defining safe discharge concentrations for antibiotics for patient use and manufacturing that would protect environmental and human health. It would also support ending unnecessary testing on metazoan species.AstraZeneca Global SHE Research Programm

    The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme

    Full text link
    Our goal is to characterize AGN populations by comparing their X-ray and optical classifications. We present a sample of 99 spectroscopically identified X-ray point sources in the XMM-LSS survey which are significantly detected in the [2-10] keV band, and with more than 80 counts. We performed an X-ray spectral analysis for all of these 99 X-ray sources. Introducing the fourfold point correlation coefficient, we find only a mild correlation between the X-ray and the optical classifications, as up to 30% of the sources have differing X-ray and optical classifications: on one hand, 10% of the type 1 sources present broad emission lines in their optical spectra and strong absorption in the X-rays. These objects are highly luminous AGN lying at high redshift and thus dilution effects are totally ruled out, their discrepant nature being an intrinsic property. Their X-ray luminosities and redshifts distributions are consistent with those of the unabsorbed X-ray sources with broad emission lines. On the other hand, 25/32 are moderate luminosity AGN, which are both unabsorbed in the X-rays and only present narrow emission lines in their optical spectra. The majority of them have an optical spectrum which is representative of the host galaxy. We finally infer that dilution of the AGN by the host galaxy seems to account for their nature. 5/25 have been defined as Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted for by the standard AGN unified scheme, as its predictions are not met for only 12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&

    Aiding the design of radiation resistant materials with multiphysics simulations of damage processes

    No full text
    The design of metals and alloys resistant to radiation damage involves the physics of electronic excitations and the creation of defects and microstructure. During irradiation damage of metals by high energy particles, energy is exchanged between ions and electrons. Such non-adiabatic processes violate the Born-Oppenheimer approximation, on which all conservative classical interatomic potentials rest. By treating the electrons of a metal explicitly and quantum mechanically we are able to explore the influence of electronic excitations on the ionic motion during irradiation damage. Simple theories suggest that moving ions should feel a damping force proportional to their velocity and directly opposed to it. In contrast, our simulations of a forced oscillating ion have revealed the full complexity of this force: in reality it is anisotropic and dependent on the ion velocity and local atomic environment. A large set of collision cascade simulations has allowed us to explore the form of the damping force further. We have a means of testing various schemes in the literature for incorporating such a force within molecular dynamics (MD) against our semi-classical evolution with explicitly modelled electrons. We find that a model in which the damping force is dependent upon the local electron density is superior to a simple fixed damping model. We also find that applying a lower kinetic energy cut-off for the damping force results in a worse model. A detailed examination of the nature of the forces reveals that there is much scope for further improving the electronic force models within MD. © 2010 Materials Research Society.Accepted versio

    DsJ(2860)D_{sJ}(2860) and DsJ(2715)D_{sJ}(2715)

    Full text link
    Recently Babar Collaboration reported a new csˉc\bar{s} state DsJ(2860)D_{sJ}(2860) and Belle Collaboration observed DsJ(2715)D_{sJ}(2715). We investigate the strong decays of the excited csˉc\bar{s} states using the 3P0^{3}P_{0} model. After comparing the theoretical decay widths and decay patterns with the available experimental data, we tend to conclude: (1) DsJ(2715)D_{sJ}(2715) is probably the 1(13D1)1^{-}(1^{3}D_{1}) csˉc\bar{s} state although the 1(23S1)1^{-}(2^{3}S_{1}) assignment is not completely excluded; (2) DsJ(2860)D_{sJ}(2860) seems unlikely to be the 1(23S1)1^{-}(2^{3}S_{1}) and 1(13D1)1^{-}(1^{3}D_{1}) candidate; (3) DsJ(2860)D_{sJ}(2860) as either a 0+(23P0)0^{+}(2^{3}P_{0}) or 3(13D3)3^{-}(1^{3}D_{3}) csˉc\bar{s} state is consistent with the experimental data; (4) experimental search of DsJ(2860)D_{sJ}(2860) in the channels DsηD_s\eta, DKDK^{*}, DKD^{*}K and DsηD_{s}^{*}\eta will be crucial to distinguish the above two possibilities.Comment: 18 pages, 7 figures, 2 tables. Some discussions added. The final version to appear at EPJ

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Real-time quantitative PCR assay with Taqman® probe for rapid detection of MCR-1 plasmid-mediated colistin resistance

    Get PDF
    AbstractHere we report the development of two rapid real-time quantitative PCR assays with TaqMan® probes to detect the MCR-1 plasmid-mediated colistin resistance gene from bacterial isolates and faecal samples from chickens. Specificity and sensitivity of the assay were 100% on bacterial isolates including 18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella pneumoniae and 12 Escherichia coli) with a calibration curve that was linear from 101 to 108 DNA copies. Five out of 833 faecal samples from chickens from Algeria were positive, from which three E. coli strains were isolated and confirmed to harbour the mcr-1 gene by standard PCR and sequencing
    corecore