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NEW TECHNOLOGIES FOR INFECTIOUS AND TROPICAL DISEASES
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Abstract
Here we report the development of two rapid real-time

quantitative PCR assays with TaqMan® probes to detect the

MCR-1 plasmid-mediated colistin resistance gene from bacterial

isolates and faecal samples from chickens. Specificity and

sensitivity of the assay were 100% on bacterial isolates including

18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella

pneumoniae and 12 Escherichia coli) with a calibration curve that

was linear from 101 to 108 DNA copies. Five out of 833 faecal

samples from chickens from Algeria were positive, from which

three E. coli strains were isolated and confirmed to harbour the

mcr-1 gene by standard PCR and sequencing.
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Introduction
The increasing prevalence of infections caused by multidrug-

resistant Gram-negative bacteria combined with few antimi-
crobial agents being in development has led to a resurgence in

interest in colistin as a last-line therapy with the inevitable risk
of emerging resistance [1–3]. MCR-1 plasmid-mediated colistin

resistance is a member of the phosphoethanolamine transferase
enzyme family, with expression in Escherichia coli resulting in the
addition of phosphoethanolamine to lipid A and resistance to

colistin [4]. This plasmid-mediated colistin resistance is an
emerging concern that has already spread worldwide [5] in

E. coli and Klebsiella pneumoniae from pigs, chicken, retail meat
(pork, chicken), humans [4]. In animal health, colistin is used to

prevent infections from E. coli isolates that are known to cause
serious adverse effects such as diarrhoea, sepsis and col-

ibacillosis, which result in huge economic losses [6]. The
extensive use of antibiotics in food-animal production has been
shown to increase the risk of transferring resistant bacteria to

humans [7].
There is a need to screen for colistin resistance even in

patients without a history of colistin usage for the timely
detection and isolation of patients harbouring such resistant

strains to prevent clonal transmission [8]. For this reason the
aim of this study was to develop rapid real-time quantitative

PCR (qPCR) to detect the MCR-1 plasmid-mediated colistin
resistance and to evaluate its sensitivity and specificity both

from strains and stool samples.
Materials and methods
Specific primers and probes design
Primers and probes design. We designed specific primers and

probes to develop two real-time qPCR assays (PE1 and PE2) for
the detection of MCR-1-encoding gene (Table 1). Specificity of
the primers and probes were verified in silico by BLASTN analysis

on the National Center for Biotechnology Information (NCBI)
database.

Sample collection
Bacterial strains. A total of 100 strains from humans and animals

were used in this study including 18 colistin-resistant isolates
carrying the mcr-1 gene (six K. pneumoniae and 12 E. coli).
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TABLE 1. Primers and probe designed to target the plasmid-mediated colistin resistance (MCR-1)

Primer/probe name Sequence
PCR product
size (bp) References

Real-time PCR
PE_F1 GCAGCATACTTCTGTGTGGTAC 145 This study
PE_R1 ACAAAGCCGAGATTGTCCGCG
PE_Probe 1 6 FAM –GACCGCGACCGCCAATCTTACC-TAMRA
PE_F2 GGGTGTGCTACCAAGTTTGCTT
PE_R3 TATGCACGCGAAAGAAACTGGC
PE_Probe 6 FAM –GCGCTGATTTTACTGCCTGTGGTG-TAMRA

Standard PCR
PE_F1 GCAGCATACTTCTGTGTGGTAC 554 This study
PE_R3 TATGCACGCGAAAGAAACTGGC
CLR5-F 50-CGGTCAGTCCGTTTGTTC-30 [4]
CLR5-R 50-CTTGGTCGGTCTGTA GGG-30

TABLE 2. Presentation of strains of the study with the genes specificity

Species
Presence of
gene MCR-1

COL MIC
(mg/L) Genes specificity

CT value with
PE1 system

CT value
with PE2
system Origins References

Escherichia coli (n = 25) + (n = 12)
− (n = 13)

4–16
<1–16

None 18–25
0

19–25
0

Thailand, Laos,
Algeria, France,
Nigeria.

[5,7]
unpublished data

Klebsiella pneumoniae (n = 33) + (n = 6)
− (n = 27)

4–32
<1–32

mgrB* (n = 2)
pmrB*(n = 1)
mgrB* (12)

18–24
0

19–25
0

Thailand, Laos,
France, Nigeria,
Algeria

[9]
unpublished data

Klebsiella oxytoca (n = 2) – 6–12 mgrB* (n = 1) 0 0 [9]
Salmonella enterica subsp. enterica (n = 5) – 0.125–16 pmrB* (n = 2)

blaCTX-M-2 (n = 5)
0 0 France [10]

Pseudomonas aeruginosa (n = 10) – <1 blaVIM-2 (n = 10) 0 0 Lebanon [11]
Acinetobacter baumannii (n = 10) – <1 blaOXA23 (n = 2), blaOXA24

(n = 2), blaOXA58 (n = 1),
blaVEB (n = 1)

0 0 Algeria [12–14]

Providencia rettgeri (n = 2) – >256 blaNDM-1 (n = 1) 0 0 Israel [15]
Morganella morganii (n = 2) – >256 blaNDM-1 (n = 1) 0 0 Israel [16]
Enterobacter cloacae (n = 5) – <1 None 0 0 Laos, Nigeria. unpublished data
Proteus mirabilis (n = 2) – >256 None 0 0 Algeria unpublished data
Proteus vulgaris (n = 2) – >256 None 0 0 Algeria unpublished data
Serratia marcescens (n = 2) – >256 None 0 0 Algeria unpublished data

* Mutation; +, positive; −, negative.
COL MIC, minimum inhibitory concentration of colistin.
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Phenotypic and genotypic features of these strains are sum-
marized in Table 2.

Chicken stool collection. A total of 833 faeces samples from
broilers were collected between August and February 2015

from eight regions in Algeria (El Tarf, Souk Ahras, Skikda, Setif,
Jijel, Algiers, Biskra and Ourgla; n = 503) and in three slaugh-
terhouses in Marseille (n = 330). All the extracted DNA from

the 833 faeces of broilers was tested using our qPCR assay and
positive samples were inoculated on agar for isolation of posi-

tive mcr-1 isolates.

Molecular analysis
Strategy for PCR amplification and sequencing. Standard PCR
amplification and sequencing of the MCR-1-encoding gene was
used as the gold standard and performed as previously

described [4]. Quantification of the MCR-1-encoding gene using
© 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microb
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
our two sets of primers and probes was performed using a
quantitative CFX96™ Real Time system C1000™ Touch

thermal cycler (Bio-Rad, Singapore). The qPCR conditions were
as follows: the reaction mixtures were kept at 95°C for 15 min

and subsequently put through 35 cycles of 95°C for 30 s and
60°C for 1 min.

Specificity and reproducibility of the new system of real-time PCR.

The specificity of the primers and probes were verified in vitro
using our local collection of 100 strains (Table 2). The sensi-

tivity of our assays was determined using ten-fold serial di-
lutions (between 108 and 101 DNA copies) of E. coli strain P10

by triplicate amplification, the number of mcr-1 in each sample
was calculated based on the DNA copy numbers. The obtained

Ct values were used to generate the calibration curves
compared with the number of bacteria quantified by standard
bacterial count on agar plates. The standard curve was
iology and Infectious Diseases, NMNI, 13, 71–74
nses/by-nc-nd/4.0/).
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Con. CFU/reacƟon Ct Avg.

108
7.50E+06 21.39

107
7.50E+05 26.42

106
7.50E+04 29.1

105
7.50E+03 31.43

104
7.50E+02 34.21

Limit of detecƟon 75 CFU/mL

PCR efficiency = [(10-1/-3.065)–1] × 100% = 111.97%

R² = 0.9742

slope = – 3.065

y = – 3.065x + 40.11
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FIG. 1. Real-time PCR sensitivity test to detect -encoding plasmid-mediated colistin resistance (MCR-1) encoding gene from Escherichia coli strain P10.

PE1 and PE2 are two quantitative PCR assays developed.
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constructed on the basis of the concordance between Ct values
and number of log CFU/mL. The limit of detection was based
on the final dilution detected by PCR. Efficacy of qPCR was

calculated from a standard curve according to Rutledge and
Cote [17].
Results
Specificity and technical sensitivity of the qPCR
BLASTN analysis of the primers and probe designed for the
development of the real-time PCR assay showed in silico a 100%

homology with the MCR-1-encoding gene only. The sensitivity
of the real-time PCR using the 18 mcr-1-positive strains using

serial ten-fold dilutions of a calibrated inoculum was excellent
with a calibration curve that was linear from 101–108 DNA

copies corresponding to 35–21 Ct (Fig. 1). Regression formulae
and PCR efficiency of the two real-time PCR assays are shown

in Fig. 1. The reproducibility of the two qPCR assays was
excellent, with a positive PCR at 21.4 ± 0.4 Ct for PE1 and
20.8 × 0.4 Ct for PE2 when testing one colony re-suspended in

200 μL of sterile water (Table 2). The specificity of the two
qPCR assays in vitro against a panel of 82 clinically relevant

bacteria negative for mcr-1 gene was 100% (all real-time PCR
were negative, Table 2).

Screening of faeces from broilers
Five of the 503 faecal samples from chickens from Algeria were

positive, from which three E. coli strains were isolated and
confirmed to harbour the mcr-1 gene by standard PCR and
sequencing. None of the 330 samples from France were positive.
© 2016 The Authors. Published by Elsevier Ltd on behal
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Discussion
The recent description and emergence of MCR-1 plasmid-

mediated resistance to colistin in humans and animals is a major
concern worldwide [5]. In this study, two new qPCR assays using

Taqman probes were developed that demonstrate high sensi-
tivity and specificity for confirmation of the presence of this gene

in colistin-resistant bacterial isolates as well as for screening
directly from stool samples. Indeed both systems have the same

performance to screen for the presence of MCR-1-containing
isolates and in stools. We recommend the use of PE1 as a first

set of primers for the rapid screening of mcr-1 and PE2 system to
confirm the positive results. Recently, Bontron et al. have re-
ported a real-time PCR assay using SYBR green as fluorescent

marker with similar sensitivity [18]. However it is well known
that Taqman probes enhance specificity, which is a critical point

when testing directly from biological samples. Our real-time PCR
assays had advantages including sensitivity, specificity and the

possibility of detecting MCR-1 plasmid-mediated colistin resis-
tance very quickly (<2 h). We believe that these real-time PCR

assays would be important and powerful tools that could be
implemented easily in clinical microbiological laboratories that
have molecular facilities, including at point of care, for identifi-

cation of MCR-1 and implementation of healthcare policies.
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