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1 Abstract  16 

Antibiotics are vital in the treatment of bacterial infectious diseases but when 17 

released into the environment they may impact non-target organisms that 18 

perform vital ecosystem services and enhance antimicrobial resistance 19 

development with significant consequences for human health. We evaluate 20 

whether the current environmental risk assessment regulatory guidance is 21 

protective of antibiotic impacts on the environment, protective of antimicrobial 22 

resistance, and propose science-based protection goals for antibiotic 23 

manufacturing discharges. A review and meta-analysis was conducted of aquatic 24 

ecotoxicity data for antibiotics and for minimum selective concentration data 25 

derived from clinically relevant bacteria. Relative species sensitivity was 26 

investigated applying general linear models, and predicted no effect 27 

concentrations were generated for toxicity to aquatic organisms and compared 28 

with predicted no effect concentrations for resistance development. Prokaryotes 29 

were most sensitive to antibiotics but the range of sensitivities spanned up to 30 

several orders of magnitude. We show reliance on one species of (cyano)bacteria 31 

and the ‘activated sludge respiration inhibition test’) is not sufficient to set 32 

protection levels for the environment. Individually, neither traditional aquatic 33 

predicted no effect concentrations nor predicted no effect concentrations 34 

suggested to safeguard for antimicrobial resistance, protect against 35 

environmental or human health effects (via antimicrobial resistance 36 

development). Including data from clinically relevant bacteria and also more 37 

species of environmentally relevant bacteria in the regulatory framework would 38 

help in defining safe discharge concentrations for antibiotics for patient use and 39 

manufacturing that would protect environmental and human health. It would 40 

also support ending unnecessary testing on metazoan species.   41 

 42 
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2 Highlights 45 

 Bacteria are most sensitive to antibiotics but there is high interspecies 46 
variation 47 

 ERA is not protective of environmental bacteria underpinning key 48 
ecosystem services 49 

 ERA does not assess antimicrobial resistance 50 
 Metazoans lack the drug target and never drive the ERA for antibiotics  51 
 Antibiotic production discharge limit of 100ng/l in the mixing zone is 52 

recommended 53 

3 Introduction: 54 

Antibiotics are crucial in human healthcare.  They are used in the treatment of 55 

bacterial infectious diseases, supporting surgical interventions, and in cancer 56 

and prophylactic treatment.  Antibiotics are also used widely in livestock and 57 

domestic animal veterinary treatments and as growth promoters in aquaculture.  58 

Global production of antibiotics for human use is valued at $40 billion a year 59 

(O’Neill 2015) illustrating their societal and economic importance. Antibiotic 60 

consumption is on the rise and between the years 2000 and 2010 there was an 61 

estimated 36% increase in use globally for human healthcare (Van Boeckel et al. 62 

2014).  63 

 64 

Antibiotics, as other pharmaceuticals, enter the environment via patient and 65 

animal use, through manufacturing plants and/or improper disposal. Common 66 

points of entry into the environment from human therapeutic use are via 67 

effluents from hospitals, domestic sewerage treatment plants, as well as via 68 

leachates from landfill sites. Antibiotics can enter into surface waters from 69 

sewerage treatment plants directly or they can be transferred via surface run off. 70 

Ground waters can be exposed from agricultural land treated with sewage 71 

sludge biosolids as a source of fertiliser (Kümmerer 2009). Veterinary antibiotics 72 

enter the aquatic environment either directly, if treated animals are poorly 73 

managed and have access to surface water, or via groundwater from the manure 74 

of treated livestock (Davies 2012; Kümmerer 2009). Antibiotics in surface 75 

waters and sewerage treatment plant effluents/wastewaters are generally 76 

measured at concentrations ranging between 0.01 and 1.0 μg/L (Batt et al. 2007; 77 



Miao et al. 2004; Monteiro and Boxall 2010; Watkinson et al. 2009).  The highest 78 

levels of antibiotic residues in effluents - in the milligram per litre range, with 79 

records in excess of 1000 mg/L - are reported from manufacturing plants in 80 

China and India (Larsson 2014; Larsson et al. 2007; Li et al. 2008; O'Neill 2015). 81 

Hospital effluents too can contain antibiotic residues in the milligram per litre 82 

concentration range (Brown et al. 2006; Watkinson et al. 2009). 83 

 84 

Antibiotics affect prokaryotic cells via a number of distinct mechanisms of action, 85 

including the inhibition of cell envelope synthesis, inhibition of protein synthesis 86 

or inhibition of nucleic acid (DNA/RNA) synthesis.  Antibiotics are designed for 87 

use in the treatment of bacterial infection in humans and livestock and are thus 88 

developed to avoid, or limit, effects on mammalian cells. It is, therefore, 89 

reasonable to assume that environmental bacteria are more likely to be 90 

adversely affected as a result of non-therapeutic exposure compared with 91 

aquatic vertebrates, such as fish. 92 

 93 

Within Europe, an environmental risk assessment (ERA) is required for a 94 

medicine if the predicted environmental concentration exceeds 10 ng/l (EMA 95 

2006).  In the USA effect studies are triggered if the expected environmental 96 

concentration exceeds 100 ng/L (US Food and Drug Administration 1998). The 97 

ERA aims to establish the safe concentrations for the protection of wildlife 98 

populations, ecosystem structure and function and includes the calculation of 99 

three predicted no effect concentrations (PNEC) for aquatic organisms, namely 100 

PNECsurfacewater (PNECSW), PNECmicroorganism, and PNECgroundwater (EMA 2006).  These 101 

are determined by establishing a no observed effect concentration (NOEC, the 102 

test concentration at which there is no statistically significant effect in the 103 

response being tested, such as on growth rate or reproduction) for a range of 104 

aquatic taxa and applying an assessment factor of ten to account for variability in 105 

species sensitivity and extrapolation from laboratory data to the field. 106 

PNECmicroorganism is based on the ‘activated sludge respiration inhibition test’ 107 

(ASRIT, OECD 2010) and is primarily used to establish risk to microorganisms in 108 

(and the function of) sewerage treatment plants. The PNECgroundwater is based on a 109 

chronic test with Daphnia magna (e.g. OECD 211 test guideline, (OECD 2012)) 110 



and PNECSW is calculated from the toxicity to three eukaryotic species – a green 111 

algae, invertebrate and fish.  For antibiotics, in Europe the ERA guidance 112 

encourages ecotoxicity testing with prokaryotes rather than a green algae “as 113 

they are [a] more sensitive indicator organisms than green algae” (EMA 2006), 114 

and this is conducted in one species of cyanobacteria only. 115 

 116 

There is concern that the ERA for antibiotics is biased towards testing on 117 

metazoan species (invertebrates and fish in this instance), and does not consider 118 

fully the possible impacts of antibiotics on microbial community structure, 119 

function and resilience (Agerstrand et al. 2015; Brandt et al. 2015). This is a 120 

major shortfall considering the fundamental ecosystem services microbial 121 

communities provide (e.g. primary production, nutrient cycling, metabolism and 122 

degradation of organic, inorganic and synthetic compounds). A major aim of this 123 

meta-analysis therefore was to test if current ERA is protective of vulnerable 124 

populations in the environment.  125 

 126 

Microorganisms exposed to antibiotics at low, sub-lethal or sub-inhibitory 127 

exposure concentrations can develop, or acquire, antimicrobial resistance (AMR) 128 

and this has been identified as a major threat to public health (Smith and Coast 129 

2002; World Health Organization 2014). AMR is likely to persist and disseminate 130 

in diverse environments, including in aquatic ecosystems (Laxminarayan et al. 131 

2013; Taylor et al. 2011).  Where the benefit of possessing and expressing the 132 

resistance gene outweighs the fitness costs of carriage, antibiotics in the 133 

environment may select for and enrich resistance genes in bacterial 134 

populations/communities which can then harbour these resistance 135 

determinants and transfer them to human pathogens (Ashbolt et al. 2013). 136 

 137 

To ensure clinical efficacy and protection of human health, minimum inhibitory 138 

(growth) concentrations (MICs, the lowest concentration at which there is no 139 

observable growth) are monitored in clinically relevant bacteria (CRB) and 140 

recorded in the European Committee on Antimicrobial Susceptibility Testing 141 

database (http://www.eucast.org).  In addition to monitoring MICs in clinically 142 

relevant species, studies with clinical isolates have also identified the lowest 143 

http://www.eucast.org/


concentration that will select for AMR, called minimum selective concentrations 144 

(MSCs).  MSCs are the minimum concentration at which the presence and 145 

expression of resistance gene(s) give bacteria a fitness advantage over non-146 

resistant cells of the same species/strain. This can occur at concentrations 147 

considerably below the MIC of the non-resistant cells (Gullberg et al. 2011). 148 

Indeed, selection may occur at exposures up to two orders of magnitude lower 149 

than the MIC for growth (Gullberg et al. 2011; Hughes and Andersson 2012; 150 

Lundström et al. 2016).   151 

 152 

From both human and environmental health perspectives, it is important that 153 

risk assessment frameworks incorporate the risk of AMR selection.  An approach 154 

to establish a surrogate PNEC for AMR (PNECR) has been suggested adopting 155 

MICs from CRB, which are available through the European Committee on 156 

Antimicrobial Susceptibility Testing database (Bengtsson-Palme and Larsson 157 

2016). This is the most comprehensive dataset available where theoretical 158 

PNECs (PNECR(T)) have been calculated for 111 antibiotics. This approach uses 159 

growth (via the MIC) to predict upper boundaries for resistance, although there 160 

has been no verification of an increase in resistance determinants.  The approach 161 

also assumes that the CRB are representative of the diversity of bacteria in 162 

nature.  Furthermore, whilst AMR maybe enriched at concentrations well below 163 

the MIC of clinical bacteria, the AMR enrichment could potentially occur at 164 

concentrations below the effects determined in traditional ERA ecotoxicity 165 

growth tests on cyanobacteria.  This meta-analysis therefore also sought to 166 

determine the relationship between protection goals proposed to protect against 167 

resistance development and the traditional aquatic protection goals; i.e. establish 168 

if the proposed methods used to derive a PNEC for AMR development (PNECR) 169 

are protective of those currently used for aquatic ecosystem function (PNECsw) 170 

and vice versa.    171 

 172 

Recognising that antibiotic releases from drug production and formulation 173 

facilities represent ‘hot spots’ for the development of AMR it is critical that these 174 

discharges are minimised and managed effectively across the whole supply 175 

chain. To address this concern, the pharmaceutical industry recently established 176 



an AMR Road map which included a commitment to “establish science-driven, 177 

risk-based targets for discharge concentrations for antibiotics and good practice 178 

methods to reduce environmental impact of manufacturing discharges, by 2020” 179 

{IFPMA, 2016 #415}.  180 

 181 

To improve the testing paradigm for antibiotics for use in prospective regulatory 182 

frameworks and to establish safe discharge concentrations for antibiotic 183 

production, we conducted a meta-analysis based on a systematic review of the 184 

publically available aquatic ecotoxicity data and clinically relevant MICs for 185 

antibiotics. Specifically we; 1) assess the relative sensitivity of commonly used 186 

taxa in aquatic ecotoxicity, with a MOA perspective, to evaluate the reliability of 187 

the current ERA of antibiotics to identify risk to vulnerable populations; 2) 188 

assess the value of extending the toxicity testing for bacteria through an 189 

assessment on the relative sensitivity of several cyanobacterial species, the 190 

marine bacteria Vibrio fischeri and the CRB MICs; 3) critically evaluate the 191 

current proposed approaches for determining the risk of AMR and its 192 

incorporation into risk assessment for the protection of human health; i.e. 193 

whether a PNECR is more or less protective than PNECSW calculated using 194 

traditional ecotoxicity testing; 4) test the assumption that CRB adequately 195 

represent environmental bacteria and evaluate the use of pre-clinical MIC data 196 

for the protection of other bacterial species through a comparison of the NOECs 197 

for cyanobacteria with the adjusted MIC, calculated by Bengtsson-Palme and 198 

Larsson (2016) from CRB and; 5) use the empirical data collected in these 199 

analysis to help establish science-driven, risk-based targets for manufacturing 200 

discharge concentrations for antibiotics. 201 

4 Methods 202 

4.1 Data search strategy 203 

A comprehensive literature search was carried out to identify studies reporting 204 

toxicological effects of antibiotics on aquatic taxa commonly used in ERA.  These 205 

taxa included cyanobacteria, green algae, macrophytes (the latter currently used 206 

in ERA for agrochemicals, but not pharmaceuticals), invertebrates and fish.  Data 207 



were also collected for the effects of antibiotics on Vibro fischeri, for the ASRIT 208 

test and Pseudomonas putida (where available).  Data were used in our analyses 209 

only if they met the following criteria: 1) the endpoint calculated was a NOEC, 210 

50% effective concentration (EC50) or 50% inhibition concentration (IC50), the 211 

concentration at which 50% of the population are effected or inhibited 212 

respectively; 2) the methodology adopted was according to (or with minor 213 

deviations from) currently accepted regulatory protocols (e.g. Organisation for 214 

Economic Co-operation and Development (OECD) or International Organisation 215 

for Standardisation (ISO) test guidelines); 3) the aquatic species belong to the 216 

taxa described above; 4) exposures were for single species not multiple 217 

species/community exposures (with exception of the ASRIT which is a 218 

community based exposure) and; 5) organisms were exposed to a single  219 

antibiotic (not a chemical mixture).  220 

 221 

The aim of this paper was to conduct a meta-analysis of available data in the 222 

context of current regulatory guidance that uses population-relevant endpoints 223 

to establish PNECs. Therefore NOECs and EC/IC50s for growth, reproduction or 224 

mortality only (or accepted surrogates e.g luminescence in V. fischeri or 225 

respiration in the ASRIT) were collected and analysed. Moreover, interpretation 226 

of biomarker endpoints in relation to population-based NOECs and EC/IC50s are 227 

not well established.   228 

 229 

Searches and data collections were conducted for the following public databases 230 

and literature: 231 

 Environmental data on antibiotics from the trade organisation for the 232 

research-based pharmaceutical industry in Sweden (LIF)), obtained from 233 

the Swedish fass.se database (www.fass.se accessed Jan 2016).  234 

 Environmental data for antibiotics from the ‘European public assessment 235 

report’ database (www.ema.europa.eu, accessed Jan 2016). 236 

 All published data in the Wikipharma database 237 

(http://www.wikipharma.org, accessed Jan 2016).  238 

http://www.fass.se/
http://www.ema.europa.eu/
http://www.wikipharma.org/


 All relevant data in the study by Vestel et al. (2015) which included the 239 

antibiotics azithromycin, bedaquiline, ceftobiprole, doripenem, linezolid, 240 

meropenem, sulfamethoxazole and trimethoprim. 241 

 Data for sulfadiazine, neomycin and gentamycin, kindly provided by 242 

Merck Sharp & Dohme (MSD) through the ‘Innovative Medicines 243 

Initiative’ iPIE project (https://www.imi.europa.eu/content/ipie). 244 

 A GoogleScholar search focused on cyanobacteria with the following 245 

search criteria for the 111 antibiotics listed in the paper by Bengtsson-246 

Palme and Larsson (2016): Antibiotic cyanobacteria "OECD 201" OR 247 

"ISO8962" OR "ISO 8962" OR "850.4500" OR "E1440-91" 248 

 The theoretical PNECR (PNECR(T)) and the size-adjusted MIC (MICaj) for 249 

antibiotics were collected from Bengtsson-Palme and Larsson (2016). For 250 

antibiotics where less than 40 species have been tested in the European 251 

Committee on Antimicrobial Susceptibility Testing database, Bengtsson-252 

Palme and Larsson (2016) calculated a size-adjusted MIC. This is a 253 

theoretical adjustment to the MIC to include 99% of CRB. The number 254 

derived from that calculation was rounded down to the nearest 255 

concentration in the range operated in the European Committee on 256 

Antimicrobial Susceptibility Testing protocol. PNECR(T)s were calculated 257 

by applying an assessment factor of 10 to account for differences between 258 

inhibitory concentrations and selective concentrations of the antibiotics. 259 

Experimentally derived MSCs were identified from literature following a 260 

GoogleScholar search with search criteria: “Minimum selective 261 

concentration” MSC AND “antibiotic resistance”. We highlight here that 262 

currently there is no internationally standardised test method for MSC 263 

and that extrapolation to the environment is poorly understood due to 264 

the complex nature of resistance enrichment, the complex nature of 265 

communities and a range of environmental factors that may influence the 266 

MSC (Khan et al. 2017; Quinlan et al. 2011). 267 

 Antifungal and antiviral drugs obtained through our search criteria were 268 

excluded from this assessment. 269 

 270 



All data derived from these searches are provided in the supplemental material, 271 

Table S1 and a flowchart to illustrate the data collection and statistical processes 272 

for these analyses is provided in figure S1. 273 

4.2 Assessment of data reliability 274 

Assessments on data reliability were undertaken using the ‘Criteria for reporting 275 

and evaluating ecotoxicity data’ (CRED) system that is specifically designed for the 276 

evaluation of ecotoxicity data for regulatory use (Moermond et al. 2016).  In this 277 

system reliability is defined as “the inherent quality of a test report or 278 

publication relating to (preferably) standardized methodology and the way the 279 

experimental procedure and results are described to give evidence of the clarity 280 

and plausibility of the findings”.  The CRED system categorises the reliability of 281 

studies into one of four scores; R1 (reliable without constraints), R2 (reliable 282 

with constraints), R3 (unreliable) or R4 (not assignable).  Studies identified as 283 

R3 are considered unsuitable for use in regulatory decision-making; whereas 284 

caution needs to be applied on a study-by-study basis for studies categorised as 285 

R2 or R4.  The CRED evaluation method also provides guidance on the evaluation 286 

of the relevance of data (Moermond et al. 2016). This, however, was not applied 287 

as the data were considered relevant for this meta-analysis having fulfilled the 288 

selection criteria outlined in section 2.1.  The CRED reliability score for each 289 

study is given in Table S1. 290 

4.3 Relative taxa sensitivity data 291 

The lowest ‘reliable’ NOEC and EC50 for each taxa were identified for each 292 

antibiotic. Data from studies that had CRED reliability scores of R1 and R2 were 293 

prioritised, without bias between R1 and R2, over those in the categories of R3 294 

or R4.  R4 data were selected over R3 data as the majority of R4 studies were 295 

assigned R4 due to unpublished/missing information in an otherwise 296 

(apparently) reliable study compared with R3, which were assigned unreliable 297 

for defined reason.  The lowest ‘reliable’ NOEC and EC50 were applied in the 298 

analysis of relative taxa sensitivity and are presented in the Table S2.  This 299 

conservative approach was deemed more appropriate rather than taking an 300 

average of all available data that has imbalanced taxa representation and varying 301 

data reliability.   302 



 303 

An analysis of the relative sensitivity of cyanobacterial species adopted the same 304 

CRED criteria as described above to establish the lowest ‘reliable’ EC50.  EC50s 305 

were used rather than NOECs as there was a larger dataset for cyanobacterial 306 

EC50s.  These data are presented in Table S3. 307 

4.4 Censored data 308 

For some antibiotics the data was either left or right censored, meaning that the 309 

value was not a precise number and was given as greater than (>) or less than 310 

(<) the value reported (i.e. no effect at the highest test concentration or an 311 

observed effect at the lowest tested concentration, respectively). Censored data 312 

values were used when no other data were available (> than numbers would 313 

represent conservative values and < numbers were included only when they 314 

represented the lowest ‘reliable’ data value). Where data were censored, this is 315 

indicated in Table S1. 316 

4.5 Establishing relative taxa sensitivity to antibiotics 317 

A sensitivity ratio (SR) was calculated between the different taxa and 318 

cyanobacteria for each antibiotic, where data were available.  The SR was 319 

calculated using the lowest NOEC (or NOEC and MICaj in the case of CRB) or EC50 320 

using the following equation:  321 

Log10SR = logEcyanobacteria - logEtaxa 322 

 323 

where E is the endpoint (NOEC, EC50 or MICaj).   324 

 325 

A SR >0 indicates that the cyanobacteria are more sensitive than the other taxa 326 

and less sensitive when SR <0.  Each unit of SR is equivalent to an order of 327 

magnitude difference in sensitivity. 328 

 329 

The difference between a SR calculated from NOECs compared with those 330 

calculated from EC50s was examined to identify how the endpoint used might 331 

impact the sensitivity ratio. Briefly, a generalised linear model (GLM) (Gaussian 332 

error family with identity link function) was constructed using the ‘lmer’ 333 

package with the restricted maximum likelihood method (Bates et al. 2015) in R 334 



(version 3.3.0; R Project for Statistical Computing, Vienna, Austria). The model 335 

residuals were normally distributed and significant differences identified using 336 

the “lmerTest” package in R (Kuznetsova et al. 2013).  SRs were used only where 337 

a NOEC and EC50 were from the same species and publication in order to 338 

exclude effects of different methodologies.  The SRs calculated from EC50s were 339 

significantly higher by 0.5 (p = 0.05) than those calculated from NOECs i.e. 340 

cyanobacteria were less sensitive as measured by EC50s.  As such, SRs calculated 341 

from EC50s were only included in subsequent analyses comparing taxa 342 

sensitivities where NOEC SRs were not available.  We acknowledge that this will 343 

have a small effect on the output of the models. However, because of the sparse 344 

dataset and the relatively small difference in SR between EC50s and NOECs 345 

compared with the differences between taxa, the inclusion of the EC50 SRs 346 

where NOEC SRs are not available increases the number of SRs for comparison 347 

and robustness of the models.   348 

 349 

We established a GLM in R (version 3.3.0; R Project for Statistical Computing, 350 

Vienna, Austria) to determine the effects of exposure duration on the EC50 for 351 

V. fischeri, as EC50 are often reported for 5, 15 and 30 minutes and for 24 hours.  352 

Censored data were removed and the remaining EC50s were log10 transformed 353 

before use in the GLM (Gaussian error family with inverse link function) that was 354 

constructed as described for comparing NOEC and EC50 SRs above. Significant 355 

differences were identified by applying a TukeyHSD post hoc test. Twenty four 356 

hour EC50s were significantly lower (p = <0.001) than those following shorter 357 

exposure periods and data for this time point only were therefore used in 358 

subsequent analyses on relative taxa sensitivities. 359 

 360 

Differences in SR across all taxa for all antibiotics were analysed using a GLM.  361 

The aim of the analysis was to compare the sensitivity of all taxa to 362 

cyanobacteria.  Cyanobacteria were chosen as the comparator because they are 363 

assumed to be the most mode-of-action relevant taxa (therefore, most sensitive 364 

species) in current ERA, and thus expected to drive the PNECSW.  Briefly, to 365 

assess for statistical differences in SR the GLM was constructed forcing the 366 

intercept through 0 (the SR value of cyanobacteria). Therefore, the statistical 367 



differences identified by “lmerTest” (Bates et al. 2015) represent the statistical 368 

difference from 0 and thus the statistical difference between the taxa and 369 

cyanobacteria.  This allowed for the exclusion of cyanobacterial SRs in the GLM 370 

as the sensitivity of cyanobacteria were already accounted for in the calculation 371 

of the SRs. TukeyHSD post hoc tests were applied to identify any further 372 

differences between the taxa groups.  Details on model construction and 373 

validation are provided in the Supplemental Material. Adopting the same process 374 

and validation steps, further GLMs were established for analyses of antibiotics 375 

with different mechanisms of actions and, where sufficient data were available, 376 

for antibiotic classes (a more detailed methodology for this is presented in 377 

Supplementary Material). 378 

 379 

Antibiotics were classified into three groups based on their broad mode of 380 

action, specifically, cell envelope inhibitors (Anatomical Therapeutic Chemical 381 

(ATC) classification system codes J01C and J01D), Nucleic acid synthesis 382 

inhibitors (ATC codes J01E and J01M) and protein synthesis inhibitors (ATC 383 

codes J01A, J01B, J01F, J01G, J01XC, J01XX08, J01XX11 and QJ01XQ).   384 

 385 

It is important to note that in addition to comparing different endpoints and 386 

methodologies, representation of antibiotics - in both potency and number of 387 

antibiotics with data - varied between and within taxa and antibiotic classes. We 388 

acknowledge this may introduce some uncertainty and potential bias in our 389 

analysis and have thus avoided the use of more complex model designs that 390 

might otherwise have introduced random factors and interactions. However, the 391 

biases mentioned above are unlikely to have an impact on the overall 392 

conclusions drawn from these analyses. 393 

4.6 Calculation of PNECs 394 

Where a full set of ecotoxicity data for an European Medicines Agency Phase 2 395 

ERA was available (cyanobacteria, invertebrate and fish tests) a PNECSW was 396 

calculated by taking the lowest NOEC of the three studies and applying an 397 

assessment factor of 10, as described in the regulatory guidance (EMA 2006).  A 398 

theoretical PNECR (PNECR(T)) was taken directly from (Bengtsson-Palme and 399 



Larsson 2016).  An experimental PNECR (PNECR(Exp)) was calculated from the 400 

lowest experimental selective concentration and applying an assessment factor 401 

of 10.  402 

 403 

There was not enough data to conduct species sensitivity distribution analysis 404 

and calculate 95% percentile protective limits, as this requires a minimum of 10 405 

species and preferably more than 15 (ECHA 2008). 406 

4.7 5th percentile determination 407 

The calculated 5th percentiles for the NOEC and MIC data subsets were not 408 

normally distributed or fitting to other known distributions (e.g. gamma and 409 

weibull) before or following transformations (log, log10 or boxcox). The 5th 410 

percentile therefore was established using the non-parametric Harrell-Davis 411 

quantile estimator method.  Analysis was conducted in R (version 3.3.0; R Project 412 

for Statistical Computing, Vienna, Austria) using the hdquantile function in the 413 

‘Hmisc’ package (Harrell Jr 2016).   414 

5 Results 415 

Ecotoxicity data were collected for 79 antibiotics (Table S1) representing 48% of 416 

the 164 approved antibiotics identified in www.drugbank.ca and (Santos et al. 417 

2017). Information on the ecotoxicity in cyanobacteria was available for 41 of 418 

these 79 antibiotics, but with NOECs for only 27 (16%).  Antibiotics with NOECs 419 

for cyanobacteria were well distributed across all ATC sub-classes under J01, 420 

with exception of J01XX (‘other antibacterials’; Figure S2).   421 

 422 

 A complete Phase 2, ERA dataset that included the full range of taxa for 423 

calculating a PNECSW (EMA 2006) was available for only seven of these 424 

antibiotics. This may reflect the lack of pharmaceutical ERA datasets placed in 425 

the public domain and/or that few antibiotics have been approved since the 426 

existing European Medicines Agency guideline came into force in 2006 requiring 427 

full chronic toxicity testing on cyanobacteria/microalgae, invertebrates and fish 428 

and consequently lack a full ecotoxicity data set. 429 

 430 



5.1 Relative species sensitivities 431 

 432 
Figure 1. Boxplots of Log10 sensitivity ratio (SR) between cyanobacteria and other species/phyla 433 
for A) all antibiotics (n=37), B) cell envelope inhibitors (n=8), C) Nucleic acid synthesis inhibitors 434 
(n=12) and D) protein synthesis inhibitors (n=16). SR calculated based on log10cyanobacteria 435 
NOEC or EC50 – log10taxa NOEC or EC50.  Where SR = 0 the sensitivity of the taxa is equal to 436 
cyanobacteria, represented by horizontal line, where SR >0 taxa had a lower sensitivity and <0 437 
indicates higher comparative taxa sensitivity. Significant differences of SR from cyanobacteria in 438 
the generalised linear mixed models are indicated by: * p<0.05; ** p<0.01; *** p<0.001.  Statistical 439 
tests were not performed on macrophytes in cell envelope inhibitors as there was only one 440 
antibiotic tested in macrophytes. 441 
 442 
Overall, cyanobacteria were the most sensitive taxa of those currently 443 

recommended in the ERA of human pharmaceuticals (EMA 2006; US Food and 444 

Drug Administration 1998) (p = <0.001, Figure 1A) and they were equally 445 

sensitive as other bacteria (CRB and V. fischeri) and more sensitive than 446 

macrophytes (that are not currently required in ERA of pharmaceuticals; 447 

p = <0.001).   448 

 449 



 450 

Figure 2. Chronic exposure effects of antibiotics on A) environmental bacteria and clinically 451 

relevant bacteria (no observed effect concentrations (NOEC) and adjusted minimum inhibitory 452 

concentrations respectively) and B) environmental bacteria 50% effective concentrations.   453 

 454 

The sensitivity of cyanobacteria and CRB were not significantly different for any 455 

of the three broad antibiotic mechanisms of actions (Figures 1B-D); NOECs in 456 

cyanobacteria were lower than CRB MICaj for half (12 out of 24 antibiotics; 457 

Figure 2A). If we were to adopt the lowest MIC, instead of the modelled MICaj, in 458 

this meta-analysis there would be more cases (18, rather than 12, out of 24) 459 

where the cyanobacteria were the most sensitive.  Although there was no clear 460 



relationship between the CRB MICaj and cyanobacterial NOECs the difference in 461 

sensitivity was up to two orders of magnitude for specific individual antibiotics 462 

(Figure 2A and 6C).  463 

 464 

There were no significant differences in sensitivity to DNA or protein synthesis 465 

inhibiting antibiotics between V. fischeri and cyanobacteria (Figure 1; there were 466 

no data for cell-envelope inhibiting antibiotics). Of the seven antibiotics where 467 

SRs could be determined five were for quinolones giving an antibiotic class bias 468 

for the V. fischeri data. EC50s for V. fischeri were lower than those for the 469 

cyanobacteria on six occasions (Figure 2B), three of these were almost an order 470 

of magnitude lower (flumequine, lomefloxacin and oxolinic acid).  V. fischeri was 471 

also the most sensitive organism to olfoxacin, with a NOEC one order of 472 

magnitude lower than the CRB MICaj (Figure 2A) and an EC50 half that for the 473 

cyanobacteria (Figure S3).  474 

 475 

Pseudomonas putida, a model (soil) gram-negative bacteria used in standard 476 

growth inhibition test guideline (ISO 1995) was more sensitive than 477 

cyanobacteria for one out of five antibiotics (meropenem; Figure 2A and B). 478 

 479 

The ASRIT (OECD 2010) was consistently between two and four orders of 480 

magnitude less sensitive than cyanobacteria, with the exception of trimethoprim 481 

(Figures 1 and 2 p = <0.001). 482 

 483 



 484 

Figure 3. Chronic exposure effects (EC50s) of antibiotics on different cyanobacteria species.  485 

 486 

There were large differences in sensitivity between cyanobacterial genera and 487 

species, with between two and three orders of magnitude difference in EC50s for 488 

10 out of the 16 antibiotics, and approximately five orders of magnitude 489 

difference in response to the β-lactams amoxicillin and ampicillin (Figure 3).  490 

Overall, Microcystis aeruginosa was the most sensitive species (in half of the 16 491 

antibiotics). Anabaena cylindrical, Synechococcus leopoliensis and Microcystis 492 

wesenbergii were each the most sensitive cyanobacterium for 2 of 16 antibiotics 493 

for which there were data on multiple species.  A. flos-aquae, one of the 494 

cyanobacterial species recommended for testing in the OECD 201 test guideline, 495 

was the most sensitive species for only 1 of the 13 antibiotics in which it was 496 

tested. When considering antibiotic sensitivity based on their mechanisms of 497 

action, Microcystis species appeared to be more sensitive to nucleic acid 498 



synthesis inhibitors (7 out of 9 antibiotics). Microcystis and Synechococcus 499 

species were the most sensitive to cell envelope inhibiting antibiotics. Anabaena 500 

genera were the most sensitive to the protein synthesis inhibitors (3 out of 6) 501 

and in two cases by more than an order of magnitude.   502 

 503 

Overall, macrophytes were generally less sensitive to antibiotics compared with 504 

cyanobacteria with a wide range of SRs (Figure 1, p = <0.001).  However, they 505 

showed equal sensitivity with cyanobacteria to nucleic acid synthesis inhibitors 506 

(average SR = 0.42; p = 0.3). The NOECs for trimethoprim and sulfadimethoxine 507 

were lower for macrophytes than for cyanobacteria (Figure 4A).  A comparison 508 

of macrophyte and environmental bacteria EC50s is provided in Figure S3. 509 

 510 



 511 

Figure 4. Chronic exposure effects of antibiotics on cyanobacteria and clinically relevant bacteria 512 

(no observed effect concentrations (NOEC) and adjusted minimum inhibitory concentrations 513 

respectively) compared with A) NOECs for microalgae and macrophytes and B) NOECs in 514 

invertebrates and fish.   515 

 516 

Microalgae were also generally less sensitive to antibiotics than cyanobacteria 517 

(Figure 1, p = <0.001). However, for sulfadiazine and sulfadimethoxine the 518 

NOECs in microalgae (0.135 and 0.529 mg/L, respectively) were over an order of 519 

magnitude lower than for the lowest in the cyanobacteria (Figure 4A).  We 520 

interpret these data with caution, however, as the results for the cyanobacteria 521 



were derived from a study based on nominal (i.e. not measured) test exposure 522 

concentrations (Ando et al. 2007). A comparison of the EC50s for microalgae 523 

with environmental bacteria is shown in Figure S3. 524 

 525 

Metazoans (fish and invertebrates) were significantly less sensitive across all 526 

antibiotics compared with cyanobacteria and often by between two and four 527 

orders of magnitude (with exception of tedlizolid phosphate, Figure 1 and 4, 528 

p = < 0.001, for both fish and invertebrates).  There was substantial variation in 529 

SR between cyanobacteria and the metazoan taxa (as illustrated by the standard 530 

errors in the data; Figure 1). In the case of tedlizoid phosphate, a pro-drug, fish 531 

appeared more sensitive than cyanobacteria (NOECs of 0.032 versus 0.063 mg/L, 532 

respectively; Figure 4B). A MICaj for tedozolid (the active pharmaceutical 533 

ingredient) was not available from the Bengtsson-Palme and Larsson (2016)  534 

study, but a MIC of 0.016 mg/L (based on 12 species), corresponding to a MICaj 535 

<0.008 mg/L was recently (January 2017) reported the European Committee on 536 

Antimicrobial Susceptibility Testing database. This suggests that CRB are 537 

substantially more sensitive to tedozolid compared with fish and cyanobacteria. 538 

The fact that tedizolid phosphate (pro-drug) requires activation by phosphatases 539 

in the blood to convert it into the active ingredient (tedizolid), and the 540 

ecotoxicity assessments in cyanobacteria appear to be based on the pro-drug 541 

only, may explain why cyanobacteria were relatively insensitive.  In no cases 542 

were the chronic NOECs for invertebrates lower than the NOECs for 543 

cyanobacteria (Figure 4).  The daphnid EC50 for the antifolate trimethoprim, 544 

however, was lower than the EC50 for cyanobacteria (8.21 and 91.68 mg/L, 545 

respectively. Figure S3). This was not the case for the NOECs for the same 546 

compound, indicating differences in the shape of the dose-response curve. 547 

Importantly, in this case cyanobacteria would still drive the PNECSW.  548 

 549 



5.2 PNEC comparisons 550 

 551 

Figure 5. Comparisons of predicted no effect concentrations (PNEC) for antimicrobial resistance 552 

and ecotoxicity for aquatic taxa in surface water.  A) Comparison of theoretically derived PNEC 553 

for resistance development (PNECR(T)) based on clinically relevant bacteria (Bengtsson-Palme 554 

and Larsson 2016) and PNEC for ecotoxicity in surface water (PNECSW). (B) Comparison of 555 

PNECR(T),PNECR based on experimentally derived minimum selective concentrations 556 

(PNECR(EXP)) and  PNECSW. In A) data are presented for antibiotics only where a full data set 557 

including cyanobacteria, invertebrate and fish tests were available and calculated from no 558 

observed effect concentrations as described in (EMA 2006).  PNECSW in B) are calculated from 559 

cyanobacteria NOECs regardless of a complete ecotoxicity data set where a PNECR(EXP) was 560 

available.  PNECR(EXP) is a less than (<) value in erythromycin and trimethoprim. PNECR(EXP) based 561 

on strain specific MSC in ciprofloxacin, erythromycin, streptomycin and trimethoprim. PNECR(EXP) 562 

based on community based MSC in tetracycline.  EC50 for cyanobacteria was used because NOEC 563 

were not available for PNECSW in streptomycin and tetracycline therefore NOEC may be up to an 564 

order of magnitude lower. 565 

 566 

For the limited number of antibiotics where a definitive PNECSW could be 567 

calculated (n=7) an analysis of the relationship between traditional ERA PNECs 568 

and those for AMR was conducted.  Within this meta-analysis the theoretically 569 

determined PNEC for resistance development PNECR(T)) obtained from 570 

Bengtsson-Palme and Larsson (2016) for the different antibiotics was not always 571 

protective of (lower than) the PNECSW (Figure 5A).  The PNECR(T) was lower than 572 

PNECSW for ceftaroline, ciprofloxacin and tobramycin.  However, the PNECSW was 573 

approximately ten-fold lower than PNECR(T) for ceftobiprole, sulfamethoxazole 574 

and azithromycin.   575 



 576 

Where experimentally derived MSCs existed, the PNECR(Exp) was lower than 577 

PNECR(T) for three out of five antibiotics with available data (Figure 5B).  578 

However, PNECR(T) overestimated the risk of resistance development for 579 

streptomycin by an order of magnitude. PNECR(T) and PNECR(Exp) were similar for 580 

trimethoprim (Figure 5B; trimethoprim PNECR(Exp) was <0.2 μg/L). The PNECSW 581 

for erythromycin and streptomycin were lower than their PNECR(T) and 582 

PNECR(Exp) (Figure 5B).  The PNECR(Exp) for erythromycin however, did not have a  583 

definitive value, (i.e. <0.2mg/L) and as such we assign caution to this 584 

comparison. 585 



5.3 Establishing 5th percentiles 586 

 587 
Figure 6.  A) Cumulative density plot of the NOECs for environmental bacteria for 27 antibiotics, 588 

showing the 5th percentile. B) Cumulative density plot of PNECs for AMR for 103 antibiotics, as 589 

calculated by Bengtsson-Palme and Larsson (2016). The vertical solid line represents the 5th 590 

percentile of the bacteria NOECs, dashed lines represent the standard error and dotted line 591 

indicates the proposed discharge limit.  Note each point can represent up to 17 antibiotics. C) 592 



Comparison of NOECs for environmental bacteria and clinically relevant bacteria minimum 593 

inhibitory concentrations. 594 

 595 
We determined the 5th percentile for growth inhibition data for cyanobacteria 596 

and environmental bacteria and MICs for CRB (See table S4). The rationale for 597 

this was to establish an environmental protection goal for antibiotic production 598 

discharges that would be protective of bacterial NOECs with 95% confidence. 599 

The 5th percentiles ranged from 225 to 2028 ng/L, depending on the bacteria and 600 

endpoints used.  The lowest NOECs for environmentally relevant bacteria 601 

(cyanobacteria, P. putida and V. fischeri) gave the lowest value (225 ± 71 ng/L, 602 

Figure 6A).  603 

6 Discussion 604 

In our evaluation of the current regulatory ERA guidance we show that of the 605 

taxa tested, as expected based on the mechanisms of action, prokaryotes were 606 

most sensitive to antibiotics. However, we also show that reliance on one species 607 

of (cyano)bacteria to set protection levels (e.g. PNECs), as operates currently, is 608 

unlikely to be protective of environmental and human health (through AMR). 609 

Individually, neither traditional aquatic PNECs nor the AMR based PNECs protect 610 

fully against the effects of antibiotics. We thus recommend the inclusion of both 611 

clinically important bacteria and a wider range of species of environmentally 612 

relevant bacteria to improve the prospective regulatory framework for human 613 

and ERA. This approach will help also in defining more appropriate safe 614 

discharge concentrations for antibiotic production, and help to exclude 615 

unnecessary ERA testing on metazoan species.   616 

6.1 Species relative sensitivity: the need for more bacteria  617 

During their development, the efficacy and safety of new antibiotics are assessed 618 

in preclinical and clinical studies before market approval. It is therefore unlikely 619 

that toxic effects will occur in an aquatic vertebrate (such as fish) at water 620 

concentrations lower than those affecting prokaryotic species (target or non-621 

target).  As expected, in our analyses, those species evolutionarily more distant 622 

to pathogenic bacteria were generally less sensitive to antibiotics compared with 623 



clinically relevant and environmental bacteria. Our results also indicate that 624 

neither cyanobacteria, CRB nor other environmental bacteria (V. fischeri and P. 625 

putida) provide a single organism/test that is fully protective of the diversity of 626 

bacteria in the environment. Thus, a PNECSW determined according to the 627 

current ERA guidance (EMA 2006; US Food and Drug Administration 1998) will 628 

not always be protective of the environment.  629 

 630 

Sensitivity to any one antibiotic differed by up to five orders of magnitude across 631 

different species of cyanobacteria. Patterns of sensitivity for the different genera 632 

were observed across the different antibiotic mechanisms of actions, but no one 633 

species was consistently the most sensitive. Cyanobacteria are one of the most 634 

diverse phyla on the planet (Shih et al. 2013; Whitton 2012) and this large range 635 

in sensitivity to antibiotics might therefore be expected. In ERA A. flos-aquae is 636 

the most regularly used of the two OECD test guideline recommended 637 

cyanobacterial species (the other being S. leopoliensis; (OECD 2011)) but A. flos-638 

aquae was the most sensitive cyanobacteria for only one of the 13 antibiotics for 639 

which data were available for multiple genera and species. In the cases of 640 

ampicillin, erythromycin, norfloxacin, oxytetracycline, sulfdiazine and 641 

trimethoprim (35% of antibiotics with multiple cyanobacterial EC50s) the 642 

difference in sensitivity between A. flos-aquae and the most sensitive taxon was 643 

greater than the assessment factor (x10) used to generate a PNEC for the risk 644 

assessment. For ampicillin, reliance on A. flos-aquae could underestimate the 645 

PNECSW by more than three orders of magnitude. This questions the current over 646 

reliance on a single cyanobacteria test species within ERA frameworks and we 647 

propose at least three cyanobacteria genera should be included within these risk 648 

assessment frameworks.  The case above for ampicillin highlights a further 649 

important issue relating to the relevance of high sensitivity for some 650 

cyanobacteria. Ampicillin is not persistent in the environment and undergoes 651 

partial degradation by bacteria; indeed, primary degradation is the resistance 652 

mechanism.  If degradation were factored in, from an ecotoxicological point of 653 

view, exposure and environmental effects would be low, although community 654 

structure changes could impact resilience.  Furthermore, since the resistance 655 

mechanism partially degrades the antibiotic resulting in a lower concentration of 656 



ampicillin in the environment care needs to be taken not to assume a low 657 

measured concentration of ampicillin necessarily equates with an absence of 658 

selection for AMR development and human health risk. 659 

 660 

The cyanobacteria adopted for toxicity testing has been based largely on 661 

experimental convenience (e.g. the ability to grow them and measure cell density 662 

in the laboratory) with little knowledge on how representative they are of other 663 

cyanobacteria.  No consideration has been given to how they grow and function 664 

in non-pelagic habitats, e.g. biofilms. From our analyses, M. aeruginosa would 665 

potentially provide a relatively high sensitivity to most antibiotics. This species 666 

however, has a slower growth rate and the current test with this species may 667 

therefore have to be extended to make the test comparable in terms of the 668 

growth and replication dynamics with that for A. flos-aquae and S. leopoliensis. 669 

We highlight that the requirement for optimised conditions for culturing a 670 

species and variation in life history components across species (e.g. growth rates 671 

and lag time) create further challenges for interspecies substance effects 672 

analyses. For example, exposure time can have a direct impact on the perceived 673 

sensitivity.  In this meta-analysis we have used data that are based on regulatory 674 

approved guidelines in which exposure time and exposure conditions have been 675 

optimized for the different organisms to ensure that growth in the controls do 676 

not reach the plateau phase, thus maximizing the ability to detect for any effects 677 

against treatment groups. Longer exposure periods could potentially result in 678 

lower effective exposure concentrations, as we demonstrate for the EC50 in V. 679 

fischeri   (for a 24 hour exposure compared with shorter test periods) and as has 680 

been shown for the ASRIT (Kümmerer et al. 2004)). Extending exposure periods 681 

in growth tests however needs to ensure that this does not compromise the 682 

ability to distinguish for effects i.e. additional time does not result in the controls 683 

being limited in their growth dynamics by the available resources and thus affect 684 

the comparison with the treated groups. It needs to be recognized, however, that 685 

differences between test conditions optimized for different species (e.g. chemical 686 

constituents of the culture media, pH, temperature, light intensity and test 687 

length, to name just a few) could all impact the fate and behavior of the antibiotic 688 

and its bioavailability, distribution, metabolism and excretion in test organisms, 689 



which in turn may influence the perceived relative sensitivity. Distinction needs 690 

to be made on whether the exposure adopted is optimized for assessment of 691 

effects relative to controls (as is the case in the OECD 201 test guideline for green 692 

algae and cyanobacteria) or focused more on environmental relevance (for 693 

example in the ASRIT analyzing for impacts within hydraulic residence time in 694 

sewerage treatment works). Species sensitivity analyses and /or functional 695 

impacts are arguably better addressed under context specific conditions that 696 

consider the microbial community structure(s) and physicochemical conditions 697 

that occur in those natural systems.  698 

 699 

Available study information was not sufficiently comprehensive to allow for 700 

consideration of these variables within our meta-analysis and we were thus 701 

restricted to endpoint data (EC50 and NOEC) that we derived from reliable 702 

studies.  Further investigation is warranted into the physiological basis for the 703 

differences in sensitivity to antibiotics to help identify species, or groups of 704 

species, that best represent the phylum for their protection and the critical 705 

ecosystem services (e.g. primary productivity and food source) they provide. 706 

 707 

V. fischeri and Pseudomonads were more sensitive than cyanobacteria to some 708 

antibiotics and may potentially provide valuable additional species for inclusion 709 

within the ERA. Furthermore, they already have internationally recognised test 710 

guidelines (ISO 1995; 2007).  V. fischeri, is a marine bacterium that would not 711 

normally be considered in ERA for freshwaters, but  is sometimes used in whole 712 

effluent assessments (ECETOC 2004). It is, nevertheless, a prokaryotic species 713 

and antibiotics and antibiotic resistant bacteria have been detected in estuaries 714 

and marine environments emanating from sewerage treatment plant discharges 715 

and manufacturing effluents (Schaefer et al. 2009; Webster et al. 2004; Zheng et 716 

al. 2011; Zou et al. 2011). The compiled data show that V. fischeri was more 717 

sensitive than cyanobacteria for six antibiotics, and for half of these by nearly an 718 

order of magnitude (flumequine, lomefloxacin and oxolinic acid).  The inclusion 719 

of this test could therefore be of value to ERA if performed with an exposure time 720 

of 24 hours (results based on exposure lengths of less than 24 hours showed 721 

significantly less sensitivity).  Pseudomonads have been shown to be less 722 



sensitive than the other soil bacteria to tetracycline, chlortetracycline, and 723 

oxytetracycline and in some instances by over an order of magnitude (Halling-724 

Sørensen et al. 2002). The low sensitivity observed in Pseudomonas species has 725 

been attributed to their apparent high natural resistance to some antibiotics 726 

(Halling-Sørensen et al. 2002; Kittinger et al. 2016).  Thus, our findings suggest 727 

that additional testing with P. putida could be of value to the ERA, but it may still 728 

not be protective of other soil bacteria. Any consideration to incorporate the test 729 

with P. putida in antibiotic ERA would need to first characterise the strain in 730 

terms of its chromosomal and plasmid resistance to help prevent biasing any 731 

function or growth based assessment (Brandt et al. 2015).  732 

 733 

The ASRIT (OECD 2010) was several orders of magnitude less sensitive to 734 

antibiotics than cyanobacteria and other bacterial species, confirming reports 735 

that this test is largely insensitive to antibiotics (Kümmerer et al. 2004).  As such, 736 

the ASRIT would not influence the outcome of the ERA.  This lack of sensitivity 737 

may be due to several factors, including the short exposure time (3 hour) of the 738 

test (Kümmerer et al. 2004), the lack of antibiotic bioavailability due to 739 

adsorption to the sludge solids (e.g. Golet et al. 2002) or that the microbial 740 

community in the activated sludge has an innate resistance having been exposed 741 

previously to the antibiotic (Davies 2012). It was not possible to assess the effect 742 

of extending the ASRIT test duration due to a lack of available data and because 743 

most ASRIT results are reported as censored data of >100 mg/L. Furthermore, 744 

the endpoint of respiration, may not be suitable for all mechanisms of actions 745 

(Brandt et al. 2015) and it does not equate with changes in bacterial diversity or 746 

community structure.  We thus support the need to replace and/or complement 747 

the ASRIT with other assays (Brandt et al. 2015), which are relevant for all 748 

pharmaceuticals. 749 

 750 

In order to build greater confidence in the ERA for antibiotics we sought to gain a 751 

better understanding on the differences observed in sensitivity between the 752 

species and to establish both how often and for which antibiotic classes these 753 

differences exceed the assessment factor of 10.  Overall, across all the antibiotics 754 

assessed, cyanobacteria and CRB were equally sensitive to antibiotics (figure 1). 755 



Thus, neither CRB nor cyanobacteria were consistently more sensitive than the 756 

other. In this meta-analysis, the inclusion of CRB in ERA would drive the PNEC in 757 

40% of cases further supporting a more holistic ‘one health’ approach that uses 758 

clinical and environmental data.  There were, however, substantial differences in 759 

sensitivity to antifolates observed between the cyanobacterial species and CRB. 760 

The folate synthesis pathway that antifolates inhibit is present in cyanobacteria 761 

and so the reason for the apparent lack of sensitivity in some cyanobacteria is 762 

unknown.  However, de Crécy-Lagard et al. (2007) reported that cyanobacteria 763 

possess a protein that may act as a folate transporter allowing the bypassing of 764 

some of the folate synthesis pathway.  Our analysis suggests therefore that 765 

cyanobacteria may not always be a suitable representative for bacteria for full 766 

protection against antifolate antibiotics.  767 

 768 

Macrophytes appear especially sensitive to antifolates and quinolones. The folate 769 

synthesis pathway in bacteria, algae and plants is fundamentally the same 770 

(Basset et al. 2005) and they are, therefore, all potentially susceptible to 771 

antifolates.  Indeed, sulfamethoxazole has been reported to act as a competitive 772 

agonist to p-aminobenzoic acid in both Lemna gibba (Brain et al. 2008b) and 773 

Arabidopsis thaliana (Zhang et al. 2012).  Macrophytes were also more sensitive 774 

than cyanobacteria to five quinolones. Quinolones cause toxicity by forming 775 

complexes with DNA gyrase or topoisomerase IV resulting in the inhibition of 776 

DNA replication and transcription (Aldred et al. 2014).  Chloroplasts are 777 

descended from cyanobacteria (Falcon et al. 2010) and some plants and red 778 

algae have been shown to contain DNA gyrases in their plastids (including 779 

chloroplasts) and mitochondria (Moriyama and Sato 2014; Wall et al. 2004).  780 

Quinolone antibiotics are reported to have anti-chloroplastic activity (Brain et al. 781 

2008a; Brain et al. 2004; Ebert et al. 2011) which can affect photosynthesis in 782 

plants (Brain et al. 2008a).  Indeed, organellar DNA gyrase has been shown to be 783 

the primary target of ciprofloxacin in Arabidopsis thaliana (Evans-Roberts et al. 784 

2016). Thus, our findings indicate that for some antibiotics in these classes, 785 

macrophytes could potentially drive the protection goal.  Consequently, these 786 

species should be considered for inclusion within risk assessment frameworks 787 

for antibiotics. 788 



      789 

The metazoan taxa were never found to be the most sensitive compared with all 790 

bacterial taxa. This questions the necessity of resource intensive metazoan 791 

testing of antibiotics, as required by European Medicines Agency and Food and 792 

Drugs Administration guidance (EMA 2006). Inclusion of appropriate (and 793 

additional) bacterial testing in the ERA for antibiotics would potentially allow for 794 

the exclusion of some unnecessary testing on metazoan species, acknowledging 795 

the principles of the 3R’s to replace, reduce and refine studies that use 796 

‘protected’ animals, such as fish (Hutchinson et al. 2016; Scholz et al. 2013).  797 

 798 

We performed this meta-analysis based on data that was deemed most reliable 799 

according to the CRED system (Moermond et al. 2016).  The conclusions 800 

however, are still drawn upon data that were conducted in different labs, with 801 

different procedures and of varying quantity (in terms of test performance and 802 

meta-data) and quality of reporting.  We strongly emphasise the need to collect 803 

and report suitable control data, chemical analysis and meta-data in order to 804 

assist in reliable comparisons of studies.  805 

 806 

An analysis of appropriate additional bacterial species for inclusion in the ERA 807 

needs to consider potential differences in sensitivity due to pharmacokinetic 808 

considerations including bioavailability, charge, uptake, elimination, metabolism, 809 

degradation rates or binding affinities, or a combination of them. Differences in 810 

bacterial morphologies and innate resistance may also account for some of the 811 

differences in sensitivity between species.  Some bacteria have several different 812 

growth forms depending on the environmental conditions. As an example, 813 

increased temperature and light intensity causes aggregation of Synechococcus 814 

elongates cells (Koblížek et al. 2000) and this aggregation may have an impact on 815 

the sensitivity of the cells to antibiotic exposure.  Several studies have 816 

demonstrated that cells in biofilms are less sensitive/more protected from 817 

chemical exposure (Balcázar et al. 2015).  A better understanding of how 818 

physiological and morphological differences in cells and community structure 819 

affect the toxicity of chemicals to bacteria is required to fully understand the risk 820 

posed by antibiotics in the environment. 821 



 822 

Bacteria are fundamental to many vital ecosystem services, but little is 823 

understood regarding species loss and functional redundancy and thus, the 824 

resilience of ecosystem function.  Some investigators, however, have begun to 825 

address this.  For example, Lundström et al. (2016) found no change in the 826 

overall taxonomic diversity when biofilms were exposed to tetracycline, 827 

however, the community composition  was  altered and the functional diversity, 828 

as measured by utilization of carbon sources, decreased with increasing 829 

tetracycline concentrations.  Ciprofloxacin exposure altered the bacterial 830 

community structure in marine sediments at 0.2 mg/L), resulting in a decrease 831 

in the community ability to degrade pyrene (Näslund et al. 2008). It was also 832 

found to increase overall biomass in salt marsh microbial communities, 833 

favouring gram negative and sulfate-reducing bacteria (Cordova-Kreylos and 834 

Scow 2007). Several studies have shown that bacterial diversity has a positive 835 

relationship with ecosystem function (Bell et al. 2005; Langenheder et al. 2010). 836 

Delgado-Baquerizo et al. (2016) demonstrated that loss of diversity in aquatic 837 

bacterial communities caused a decrease in both broad (microbial respiration) 838 

and specialized (toxin degradation; of mycrocystin-LR and triclosan 839 

degradation) endpoints and the communities showed little or no functional 840 

redundancy. These studies indicate that a small drop in bacterial diversity may 841 

potentially impact negatively on the ecosystem services they provide.  842 

      843 

From this, we conclude that the ERA framework for antibiotics needs to be based 844 

upon a suitable range of bacteria. This should include CRB and capture a wider 845 

range of ecologically important functional groups.  Previous investigators have 846 

identified standard studies that may fulfill some of these data gaps e.g. nitrifying 847 

bacteria, methanogens and sulfate-reducing bacteria (Brandt et al. 2015) 848 

although more research is required to identify if these tests will be protective of 849 

all functional bacterial groups or if further standard tests will need to be 850 

developed.  The effect of antibiotics on these functional groups is currently 851 

outside risk assessment frameworks and environmental and non-therapeutic 852 

human impacts are considered in isolation.  Furthermore, a measure of the 853 

change in community structure would add value, especially looking at diversity 854 



in terms of clinical and environmental relevance, and understanding to changes 855 

in functional endpoints in bacterial multispecies/community tests to determine 856 

whether ecological resilience is being compromised. 857 

6.2 PNECs for AMR verses traditional ecotoxicological effects  858 

AMR is a serious risk to human health globally and currently sits outside the ERA 859 

regulations. Both theoretical methodologies and empirical data available for 860 

assessing AMR selection and transfer in the environment are limited. 861 

Consequentially, evidence is lacking to assess the best approach for the risk of 862 

AMR development, how resistance in the environment may lead to enrichment of 863 

resistance in human pathogens and how the risk posed by antibiotics by AMR 864 

development compares to their effects upon ecosystem function and services. 865 

Previous investigators have explored resistance selection using a variety of 866 

approaches, for example, comparing predicted environmental concentrations 867 

with MICs (Kümmerer and Henninger 2003), using MICs to calculate potentially 868 

affected fractions of communities (Singer et al. 2011) and using growth and 869 

competition experiments to demonstrate resistance selection (Negri et al. 2000) 870 

and calculate MSCs (Gullberg et al. 2011).  The theoretical approach proposed by 871 

Bengtsson-Palme and Larsson (2016) is a recent contribution and provides a 872 

good basis for this discussion, using MIC data to assess reduction in antibiotic 873 

efficacy due to erosion by resistance.  However, it is important to note that this 874 

approach assumes growth can be used to predict resistance and is not verified 875 

through direct testing of resistance markers and as such any conclusions drawn 876 

from this analysis must therefore be considered with this in mind.   877 

 878 

Our findings suggest that the PNECRT) defined by Bengtsson-Palme and Larsson 879 

(2016) is not always lower than the PNECSW; for 7 antibiotics PNECSW was lower 880 

in four cases (figure 5). This may be due to either the PNECR(T) underestimating 881 

the risk or cyanobacteria being more sensitive to some antibiotics compared 882 

with the CRB. Experimentally determined MSCs were derived largely from 883 

laboratory strain competition experiments (four of the five cases; Figure 5B), 884 

where strains that differ in only the presence/absence of the resistance genes 885 

under investigation are compared (Gullberg et al. 2014; Gullberg et al. 2011).  886 



These strain competition experiments have limitations in scaling up to more 887 

complex microbial communities (Bengtsson-Palme et al. 2014).  There are very 888 

few cases where analyses have been conducted for more complex communities 889 

but it is hypothesised that the combined effects of changes in community 890 

structure (due to loss of the most sensitive species), protective morphological 891 

forms (e.g. bacteria maybe less susceptible in biofilms compared to those within 892 

the water column (Balcázar et al. 2015)), difficulty in defining the ‘true’ antibiotic 893 

exposure concentration, and alternative selection pressures (e.g. nutrient 894 

limitation, predation and other chemical/physical stressors) may negate the 895 

fitness benefit of the resistance (Bengtsson-Palme and Larsson 2016; Brosche 896 

and Backhaus 2010; Day et al. 2015; Gullberg et al. 2014; Lundström et al. 2016; 897 

Quinlan et al. 2011). Most studies that have considered effects of antibiotics on 898 

complex communities have been taxon independent, assessing AMR gene copy 899 

number relative to 16SrRNA, rather than providing species specific information. 900 

Investigations into AMR following tetracycline exposure, however, have found 901 

that resistance was increased in periphyton at the lowest test concentration of 902 

0.5 μg/L (Quinlan et al. 2011), horizontal gene transfer (HGT) was promoted at 903 

10 μg/L (Jutkina et al. 2016) and resistant bacteria and resistance genes was 904 

increased in biofilms at concentrations below 1 μg/L (Lundström et al , 2016). 905 

Assuming an assessment factor of 10, from this data a PNECR(Exp) would be 0.05 906 

μg/L, which is 20 times lower than PNECR(T) of 1 μg/L (Bengtsson-Palme and 907 

Larsson 2016).  There is no NOEC data for tetracycline in cyanobacteria, but in 908 

Microcystis aeruginosa a EC50 is reported at 90 μg/L (Halling-Sørensen, 2000) 909 

and in Anabaena sp an EC10 of 2.5 mg/L (González-Pleiter et al. 2013), 910 

suggesting that resistance for tetracycline may occur at concentrations nearly 911 

100-fold lower than effects on growth inhibition in cyanobacteria.  This again 912 

emphasizes the need for a more holistic approach to the setting of protection 913 

goals for antibiotics and the development of validated assays to assess MSCs in 914 

complex and simple systems, as well as generating toxicity data for 915 

cyanobacteria and other environmental and/or clinical bacteria.  916 

 917 

It should be recognized that although studies that are used to guide regulatory 918 

decision-making require standardized test methodologies to help ensure reliable 919 



and repeatable results, the link between these single species studies and those 920 

operating in the complex systems in the field is largely unknown and, as 921 

mentioned previously, the link to ecosystem services is not made.  The 922 

application of mesocosm studies that enable community response and effects 923 

upon ecosystem functions to be assessed have good utility here to help provide 924 

insights into the development of AMR in environmentally realistic scenarios 925 

(Knapp et al., 2008; Knapp et al., 2010; Quinlan et al., 2011).   In addition to living 926 

in complex communities in the environment, it is important to note that 927 

organisms are also likely to be exposed to antibiotic mixtures and the 928 

relationship between single exposure laboratory testing and mixtures toxicity is 929 

unknown and requires further research (Backhaus et al. 2000; Brosche and 930 

Backhaus 2010; González-Pleiter et al. 2013; Liu et al. 2014).   931 

 932 

In the context of current regulatory guidance, MSCs derived from experimental 933 

data, albeit they are limited, in some cases supported the theoretically derived 934 

PNECR(T).  There were cases also where PNECR(T) was not necessarily appropriate 935 

(optimal) for risk assessment for AMR.  Nevertheless, until there is an 936 

internationally accepted method for the experimental determination of PNECR - 937 

which may require further knowledge on resistance mechanisms, model 938 

variability and the application to mixed communities that vary over time and 939 

space - the theoretical approach advocated by Bengtsson-Palme and Larsson 940 

(2016), based on MIC data in the European Committee on Antimicrobial 941 

Susceptibility Testing database, provides a valuable alternative as part of a 942 

broader evidence-based approach to ERA.  Moreover, it provides an efficient and 943 

cost effective method to address concerns and prioritise legacy antibiotics that 944 

have already been registered and are present in the environment.  It should be 945 

noted, however, that there are clear limitations to this approach (as identified by 946 

the paper’s authors).  These include the test conditions for determining the MIC 947 

in CRB, that are largely environmentally irrelevant, the assumptions that growth 948 

inhibition can be used to predict selection for resistance.  There is also an 949 

assumption that an assessment factor of 10 will provide a suitable safety margin 950 

to account for selection below the MIC and conversely that adjusting the MIC 951 

down to account for species numbers and then applying a further assessment 952 



factor of 10 isn’t overprotective. Finally, MIC-derived protection goals will 953 

change over time, as MICs are determined for more species with variable 954 

sensitivity and as a consequence periodic updates will be required.     955 

 956 

Our analysis suggests that the susceptibility of species in European Committee 957 

on Antimicrobial Susceptibility Testing is not always protective of environmental 958 

bacteria, such as cyanobacteria and therefore a PNECR(T) using CRB MIC data as a 959 

surrogate for resistance may not be protective of the risk of AMR development in 960 

environmental bacteria. Furthermore, we show that a PNECR(T) may not be 961 

protective of ecosystem function traditionally determined using the growth 962 

inhibition test with cyanobacteria. From this we conclude that despite evidence 963 

that resistance will occur at lower concentrations than the effects on population 964 

density (Gullberg et al. 2011; Hughes and Andersson 2012), both a PNECR and a 965 

PNECSW are needed to establish safe concentrations for the protection of 966 

ecosystem function and against the development of resistance. 967 

 968 

It is noteworthy that from an environmental health perspective (rather than 969 

human health), AMR can provide an ecosystem service or benefit. For example, 970 

bacteria expressing beta-lactamase enzyme activity degrade and reduce the 971 

environmental burden of beta-lactam antibiotics and this in turn could 972 

contribute positively in sewerage treatment plants where high antibiotic 973 

concentration might otherwise compromise functional efficiency.  974 

6.3 Production discharge limits 975 

In addressing the impact of antibiotic pollution on ecosystem function, AMR 976 

development and human health, safe discharge limits for antibiotic production 977 

facilities need to be established (Agerstrand et al. 2015; Larsson 2014; Pruden et 978 

al. 2013).  However, there are few data available in the public domain to support 979 

the development of such limits and this is especially so for experimental data on 980 

AMR development. Most data that are available are based on growth inhibition 981 

tests and we have therefore identified the lowest NOEC values for 27 antibiotics 982 

representing sensitive phyla (cyanobacteria, V. fischeri and P. putida) and using 983 

these data we estimate the 5th percentile to be 225 ± 71 ng/L. Thus, a 984 



conservative limit of 154 ng/L would account for uncertainty. Provided that 985 

these 27 antibiotics are representative of all antibiotics, the cyanobacterial 986 

NOECs are, with 95% confidence, likely to be higher than 154 ng/L.  987 

 988 

The lowest MSC reported in the literature is 100 ng/L with many others between 989 

10-1000 times higher (Brosche and Backhaus 2010; Gullberg et al. 2014; 990 

Gullberg et al. 2011; Lundström et al. 2016).  Setting a threshold limit of 991 

100 ng/L for antibiotic discharges would, therefore, appear to be protective of 992 

environmental bacterial populations (with 95% confidence) and match the 993 

lowest empirical evidence of AMR development. However, it would not be 994 

protective for 16% of the theoretical PNECR(T)s, described by Bengtsson-Palme 995 

and Larsson (2016) (Figure 6B) highlighting that safe discharge limits may need 996 

to be lower than this for some antibiotics in order to consider the potential to 997 

select for resistance in clinical and environmental isolates. It should be noted, 998 

however, that the PNECR(T) incorporates a correction factor that adjusts the MIC 999 

according to the number of species it is based upon and a further assessment 1000 

factor of 10 to account for AMR.  In turn, the corrections could cause the PNECR(T) 1001 

to be over protective (as shown for some antibiotics in Figure 5B).  1002 

 1003 

A single, protective threshold limit that could be applied as an interim measure 1004 

in the absence of other reliable empirical clinical and or environmental data (and 1005 

standardised methodologies for AMR), which is based on empirical data would 1006 

be of great value.  Based on the antibiotic compounds for which we were able to 1007 

obtain NOECs from environmentally relevant bacteria and from the available 1008 

MSCs in the literature, we suggest a production discharge limit of 100 ng/L for 1009 

each antibiotic, applied in the mixing zone downstream of the point source 1010 

discharge for protection of ecosystem function and the risk of AMR development. 1011 

The use of a single protection goal rather than a range, for production facilities 1012 

offers pragmatic benefits to industry and suppliers.  Compliance with a single 1013 

protection value provides simplicity and ease of implementation compared with 1014 

the 111 values advocated for the different antibiotics suggested by Bengtsson-1015 

Palme and Larsson (2016), of which some would not be protective of the 1016 

environment or the MSC.  Consideration is required for how this limit would 1017 



apply in the case of antibiotic mixtures, although this falls out of scope of this 1018 

meta-analysis.   1019 

 1020 

This approach could also help prevent the use of conflicting values for a single 1021 

antibiotic.  However, it is important to ensure that this value proves to be 1022 

protective. So where other data are available (e.g. empirical or PNECR(T)) that 1023 

suggest a lower limit is required to be protective, the 100 ng/L should be 1024 

adjusted accordingly to provide the required protection. Equally, a higher limit 1025 

may be applicable where there are substantive data to support its increase.  We 1026 

advocate this as an interim measure only until more data are obtained to support 1027 

the risk analysis for antibiotics. Furthermore, as methodologies for the 1028 

assessment of AMR are developed these values should also be incorporated and 1029 

protection goals updated.   1030 

7 Concluding remarks and considerations for ERA 1031 

Our analysis shows that frameworks for ERA and human health protection 1032 

(through protection for the risk of AMR) for antibiotics need to consider the 1033 

impact of antibiotics on relevant vulnerable species and the essential ecosystem 1034 

services they provide. The current framework for ERA based on just one 1035 

cyanobacterial species is, in many cases, inadequate and it does not address risk 1036 

to critical ecosystem services. There is also an urgent need to better establish the 1037 

effects of antibiotics on bacterial diversity, community structure, ecosystem 1038 

function and resilience in order to better understand the effects of antibiotics in 1039 

the environment. 1040 

 1041 

We emphasise that the presence of antibiotics in the environment does not 1042 

necessarily lead to the development of AMR in bacterial communities and studies 1043 

are required that better establish the toxic effects of antibiotics, AMR and the 1044 

relationship between them in environmentally relevant contexts.  In the 1045 

environment other selection pressures (e.g. nutrient availability and predation) 1046 

may be more significant than that posed by exposure to low levels of antibiotics. 1047 

As a consequence AMR may not be observed at the same concentrations as in the 1048 



laboratory studies.  However, it is also the case that the fitness cost of carrying 1049 

some resistance genes may be very low or even neutral and therefore the genes 1050 

coding for resistance could remain in the bacterial communities after only a 1051 

short exposure. Understanding these complexities in AMR development in the 1052 

environment is crucial for establishing interrelationships with human pathogens 1053 

and in turn managing and mitigating the risk of antibiotics in the environment 1054 

for the protection of human health. 1055 

 1056 

From our analyses on relative species sensitivity we highlight the following as 1057 

key considerations for the use, and development of human and ERA frameworks 1058 

for antibiotics. 1059 

1. The need for inclusion of a larger selection of bacterial species for testing 1060 

to account for the variability in sensitivity between species and for 1061 

greater confidence in the protection of bacterial communities and the 1062 

ecosystem services they provide.   1063 

a. Brandt et al. (2015) have identified a number of suitable 1064 

established standard tests for other bacteria (including P. putida) 1065 

and for ecosystem services (e.g. nitrification and carbon 1066 

transformation) and these should be considered as additional tests 1067 

in the ERA of antibiotics.   1068 

b. We show that pre-clinical MIC data of CRB could be used to 1069 

increase the diversity of bacterial species represented in ERA at 1070 

little cost. The use of pre-clinical and clinical data is often 1071 

advocated to identify environmental risk (Boxall et al. 2012) but 1072 

the realisation of this is limited with ‘bridging’ studies and 1073 

methods still being developed. 1074 

c. We reaffirm that the only required community test, the ASRIT, is 1075 

not sensitive to antibiotics and thus its suitability for determining 1076 

the effect of antibiotics to environmental bacteria and sewerage 1077 

treatment plant microorganism communities is questionable. 1078 

Consideration for its replacement by tests to assess the effects on 1079 

bacterial community function or impacts on population growth are 1080 

warranted.   1081 



2. Testing of antibiotics on metazoans may not be required.  1082 

a. Metazoans were generally 2 to 4 orders of magnitude less sensitive 1083 

to antibiotics than cyanobacteria. Further investigation is required 1084 

to assess and confirm these results on a wider series of empirical 1085 

in vivo exposures, however this meta-analysis provides a starting 1086 

point for this discussion and the possible reduction in the use of 1087 

metazoans in antibiotic testing. 1088 

3. Our meta-analysis highlights that the relative high sensitivity of 1089 

microalgae and macrophytes to some antifolate and quinolone antibiotics 1090 

(compared with cyanobacteria) supporting their inclusion in risk 1091 

assessment frameworks for these compound classes. Further research 1092 

into the relative sensitivity of macrophytes and microalgae to these 1093 

classes of antibiotics is warranted. 1094 

4. Test systems to determine PNEC or MSC for AMR development are 1095 

urgently required for clinical and environmental species. Our analysis, 1096 

suggests that the CRB in the European Committee on Antimicrobial 1097 

Susceptibility Testing database are not always representative of the 1098 

diversity of sensitive bacteria in nature. This illustrates that ERA needs to 1099 

incorporate both PNECSW and PNECR.  There is a need to develop a 1100 

standardised method to experimentally determine an MSC in 1101 

environmental and clinical bacteria, exemplified by three out of five 1102 

experimental values being lower than the theoretical value. 1103 

5. A discharge limit of 100 ng/L maybe a protective and pragmatic approach 1104 

to address environmental concerns around antibiotic production in the 1105 

absence of sufficient reliable clinical and environmental data, whilst 1106 

urgently needed methodologies and empirical data are obtained to draw 1107 

firmer conclusions.  Where data exists that suggest a higher or lower 1108 

concentration is required to be protective that value should be used 1109 

instead. 1110 
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