87 research outputs found

    Hydrography of the Ocean Coast of the Belgian Congo

    Get PDF

    Assessing a Pilot Scheme of Intensive Support and Assertive Linkage in Levels of Engagement, Retention, and Recovery Capital for People in Recovery Housing using Quasi-Experimental Methods

    Get PDF
    Introduction: Strong and ever-growing evidence highlights the effectiveness of recovery housing in supporting and sustaining substance use disorder (SUD) recovery, especially when augmented by intensive support that includes assertive linkages to community services. This study aims to evaluate a pilot intensive recovery support (IRS) intervention for individuals (n=175) entering certified Level II and III recovery residences. These individuals met at least three out of five conditions (no health insurance; no driving license; substance use in the last 14 days; current unemployment; possession of less than $75 capital). The study assesses the impact of the IRS on engagement, retention, and changes in recovery capital, compared to the business-as-usual Standard Recovery Support (SRS) approach (n=1,758). Methods: The study employed quasi-experimental techniques to create weighted and balanced counterfactual groups. These groups, derived from the Recovery Capital (REC-CAP) assessment tool, enabled comparison of outcomes between people receiving IRS and those undergoing SRS. Results: After reweighting for resident demographics, service needs, and barriers to recovery, those receiving IRS exhibited improved retention rates, reduced likelihood of disengagement, and growth in recovery capital after living in the residence for 6-9 months. Conclusion: The results from this pilot intervention indicate that intensive recovery support, which integrates assertive community linkages and enhanced recovery coaching, outperforms a balanced counterfactual group in engagement, length of stay, and recovery capital growth. We suggest that this model may be particularly beneficial to those entering Level II and Level III recovery housing with lower levels of recovery capital at admission

    PROARTIS: Probabilistically analyzable real-time systems

    Get PDF
    Static timing analysis is the state-of-the-art practice of ascertaining the timing behavior of currentgeneration real-time embedded systems. The adoption of more complex hardware to respond to the increasing demand for computing power in next-generation systems exacerbates some of the limitations of static timing analysis. In particular, the effort of acquiring (1) detailed information on the hardware to develop an accurate model of its execution latency as well as (2) knowledge of the timing behavior of the program in the presence of varying hardware conditions, such as those dependent on the history of previously executed instructions. We call these problems the timing analysis walls. In this vision-statement article, we present probabilistic timing analysis, a novel approach to the analysis of the timing behavior of next-generation real-time embedded systems. We show how probabilistic timing analysis attacks the timing analysis walls; we then illustrate the mathematical foundations on which this method is based and the challenges we face in the effort of efficiently implementing it. We also present experimental evidence that shows how probabilistic timing analysis reduces the extent of knowledge about the execution platform required to produce probabilistically accurate WCET estimations. © 2013 ACM.Peer Reviewe

    Improving Measurement-Based Timing Analysis through Randomisation and Probabilistic Analysis

    Get PDF
    The use of increasingly complex hardware and software platforms in response to the ever rising performance demands of modern real-time systems complicates the verification and validation of their timing behaviour, which form a time-and-effort-intensive step of system qualification or certification. In this paper we relate the current state of practice in measurement-based timing analysis, the predominant choice for industrial developers, to the proceedings of the PROXIMA project in that very field. We recall the difficulties that the shift towards more complex computing platforms causes in that regard. Then we discuss the probabilistic approach proposed by PROXIMA to overcome some of those limitations. We present the main principles behind the PROXIMA approach as well as the changes it requires at hardware or software level underneath the application. We also present the current status of the project against its overall goals, and highlight some of the principal confidence-building results achieved so far

    Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Get PDF
    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150Mm(-1) within the dust plume. Non-negligible aerosol extinction (about 50Mm(-1)) has also been observed within the marine boundary layer (MBL). By combining the ATR- 42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 μm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 μm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to (-90)Wm(-2) at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5 K per day in the solar spectrum (for a solar angle of 30 ) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20Wm(-2) (for the whole period) over the Mediterranean Sea together with maxima (-50Wm(-2)) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multiyear simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.French National Research Agency (ANR) ANR-11-BS56-0006ADEMEFrench Atomic Energy CommissionCNRS-INSU and Meteo-France through the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales)CORSiCA project - Collectivite Territoriale de Corse through Fonds Europeen de Developpement Regional of the European Operational ProgramContrat de Plan Etat-RegionEuropean Union's Horizon 2020 research and innovation program 654169Spanish Ministry of Economy and Competitivity TEC2012-34575Science and Innovation UNPC10-4E-442European Union (EU)Department of Economy and Knowledge of the Catalan Autonomous Government SGR 583Andalusian Regional Government P12-RNM-2409Spanish Government CGL2013-45410-R 26225

    Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?

    Get PDF
    Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed
    • …
    corecore