16 research outputs found

    A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins

    Get PDF
    Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system

    Structure and assembly of a Clostridioides difficile spore polar appendage

    No full text
    Clostridioides difficile, a strict anaerobic spore-former, is the main cause of nosocomial disease associated to antibiotic therapy in adults and a growing concern in the community. Spores are the main infectious, persistence and transmission vehicle. Spore germination occurs in the intestine and the resulting vegetative cells will produce the toxins responsible for the disease symptoms, and spores. During sporulation, a wild type population bifurcates into two main spore morphotypes, with or without a thick exosporium. We show that this bifurcation extends to the formation of spores with a robust polar appendage or spores with a short appendage or that lack this structure. The cysteine-rich CdeM protein localizes to the appendage and around the entire surface of the spore, and is a major structural component of the exosporium, which we show is continuous with the appendage. In a CdeM mutant, when present, the polar appendage is short and disorganized. We show that wild type and cdeM spores with a short or no appendage germinate poorly in response to taurocholate, compared to those with an appendage. cdeM spores of the two types, however, germinate faster than their wild type counterparts. Thus, while the absence of CdeM may increase the permeability of spores to taurocholate, proper assembly of the appendage is also important for germination. Consistent with an overall enhancement of germination, a cdeM mutant shows increased virulence in a hamster model of disease. For a wild type population, spores with a short or no appendage germinate slower than the appendage-bearing spores. Differences in transmission, persistence and disease severity may result, in part, from their proportion in a spore population.<br/

    Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry

    No full text
    In mammals and insects, pheromones strongly influence social behaviors such as aggression and mate recognition. In Drosophila melanogaster, pheromones in the form of cuticular hydrocarbons play prominent roles in courtship. GC/MS is the primary analytical tool currently used to study Drosophila cuticular hydrocarbons. Although GC/MS is highly reproducible and sensitive, it requires that the fly be placed in a lethal solution of organic solvent, thereby impeding further behavioral studies. We present a technique for the analysis of hydrocarbons and other surface molecules from live animals by using direct analysis in real-time (DART) MS. Cuticular hydrocarbons were sampled from the surface of a restrained, awake behaving fly by using several brief, carefully controlled depressions of the abdomen with a small steel probe. DART mass spectral analysis of the probe detected ions with mass-to-charge ratio (m/z) of the protonated molecule corresponding to many of the previously identified unsaturated hydrocarbons. Six additional cuticular hydrocarbons also were identified. Consistent with previous GC/MS studies, male and female differences in chemical composition were evident. Spatial differences in the expression profile also were observed on males. Sampling from an individual female first as a virgin and then 45 and 90 min after successful copulation showed that mass signals likely to correspond to cis-vaccenyl acetate, tricosene, and pentacosene increased in relative intensity after courtship. This method provides near-instantaneous analysis of an individual animal's chemical profile in parallel with behavioral studies and could be extended to other models of pheromone-mediated behavior
    corecore