372 research outputs found

    Post-1995 French cinema: return of the social, return of the political?

    Get PDF
    A key trend in post-1995 French cinema has been the return of the social. Analysing this trend, this article seeks to evaluate its politic impact. Using HervĂ© Le Roux’s Reprise (1997) and AgnĂšs Varda’s Les Glaneurs et la glaneuse (2000) as key meta-texts, it suggests that the current wave of politically engaged cinema needs to be approached in new ways that recognise how films trace the impact of a politically unmediated, ‘raw’ real on groups or individuals. It further suggests that the withdrawal of political mediation gives the films an essential ambiguity and a melodramatic quality that, rather than mere clichĂ©, may be a privileged way to engage with the violence of the real. Film is now not so much in the van but dans le bain of a diverse socio-political stirring

    Interplay of Sugar, Light and Gibberellins in Expression of Rosa hybrida Vacuolar Invertase 1 Regulation

    Get PDF
    Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5â€Č deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell’s response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the –595 to –468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate ÎČ-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between –595 and –468 bp is critical for light and sugar and light and gibberellins to act synergistically

    The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica

    Full text link
    The ASTEP (Antarctica Search for Transiting ExoPlanets) program was originally aimed at probing the quality of the Dome C, Antarctica for the discovery and characterization of exoplanets by photometry. In the first year of operation of the 40 cm ASTEP 400 telescope (austral winter 2010), we targeted the known transiting planet WASP-19b in order to try to detect its secondary transits in the visible. This is made possible by the excellent sub-millimagnitude precision of the binned data. The WASP-19 system was observed during 24 nights in May 2010. The photometric variability level due to starspots is about 1.8% (peak-to-peak), in line with the SuperWASP data from 2007 (1.4%) and larger than in 2008 (0.07%). We find a rotation period of WASP-19 of 10.7 +/- 0.5 days, in agreement with the SuperWASP determination of 10.5 +/- 0.2 days. Theoretical models show that this can only be explained if tidal dissipation in the star is weak, i.e. the tidal dissipation factor Q'star > 3.10^7. Separately, we find evidence for a secondary eclipse of depth 390 +/- 190 ppm with a 2.0 sigma significance, a phase consistent with a circular orbit and a 3% false positive probability. Given the wavelength range of the observations (420 to 950 nm), the secondary transit depth translates into a day side brightness temperature of 2690(-220/+150) K, in line with measurements in the z' and K bands. The day side emission observed in the visible could be due either to thermal emission of an extremely hot day side with very little redistribution of heat to the night side, or to direct reflection of stellar light with a maximum geometrical albedo Ag=0.27 +/- 0.13. We also report a low-frequency oscillation well in phase at the planet orbital period, but with a lower-limit amplitude that could not be attributed to the planet phase alone, and possibly contaminated with residual lightcurve trends.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 13 figure

    Interval Slopes as Numerical Abstract Domain for Floating-Point Variables

    Full text link
    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new partially relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. Hence it is adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems

    Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route

    No full text
    International audienceZinc-gallium oxynitride powders (ZnGaON) were synthesized by nitridation of ZnGa2O4 oxide precursor obtained by polymeric precursors (PP) and solid state reaction (SSR) methods and the influence of the synthesis route of ZnGa2O4 on the final compound ZnGaON was investigated. Crystalline single phase ZnGa2O4 was obtained at 1100 oC / 12 h by SSR and at 600 oC / 2 h by PP with different grain sizes and specific surface areas according to the synthesis route. After nitridation, ZnGaON oxynitrides with a GaN wĂŒrtzite-type structure were obtained in both cases, however at lower temperatures for PP samples. The microstructure and the specific surface area were strongly dependent on the oxide synthesis method and on the nitridation temperature (42 m2g-1 and 5 m2g-1 for PP and SSR oxides treated at 700 °C, respectively). The composition analyses showed a strong loss of Zn for the PP samples, favored by the increase of ammonolysis temperature and by the higher specific surface area

    Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)

    Get PDF
    The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N=1-0, J=2-1 and ortho-NH2 1_1,1-0_0,0. We also observed ortho-NH3 1_0-0_0, and 2_0-1_0, para-NH3 2_1-1_1, and searched unsuccessfully for NH+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total column densities over the velocity range 11-54 km/s are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen, approximately 6*10^-9, 3*10^-9, and 3*10^-9 for NH, NH2, and NH3, respectively. These abundances are discussed with reference to models of gas-phase and surface chemistry.Comment: 5 pages, 3 figures, 2 online pages with 2 figures. Accepted for publication in A&A July 6 (Herschel/HIFI special issue

    Acute TNFα levels predict cognitive impairment 6-9 months after COVID-19 infection.

    Get PDF
    A neurocognitive phenotype of post-COVID-19 infection has recently been described that is characterized by a lack of awareness of memory impairment (i.e., anosognosia), altered functional connectivity in the brain's default mode and limbic networks, and an elevated monocyte count. However, the relationship between these cognitive and brain functional connectivity alterations in the chronic phase with the level of cytokines during the acute phase has yet to be identified. Determine whether acute cytokine type and levels is associated with anosognosia and functional patterns of brain connectivity 6-9 months after infection. We analyzed the predictive value of the concentration of acute cytokines (IL-1RA, IL-1ÎČ, IL-6, IL-8, IFNÎł, G-CSF, GM-CSF) (cytokine panel by multiplex immunoassay) in the plasma of 39 patients (mean age 59 yrs, 38-78) in relation to their anosognosia scores for memory deficits via stepwise linear regression. Then, associations between the different cytokines and brain functional connectivity patterns were analyzed by MRI and multivariate partial least squares correlations for the whole group. Stepwise regression modeling allowed us to show that acute TNFα levels predicted (R <sup>2</sup> = 0.145; ÎČ = -0.38; p = .017) and were associated (r = -0.587; p < .001) with scores of anosognosia for memory deficits observed 6-9 months post-infection. Finally, high TNFα levels were associated with hippocampal, temporal pole, accumbens nucleus, amygdala, and cerebellum connectivity. Increased plasma TNFα levels in the acute phase of COVID-19 predict the presence of long-term anosognosia scores and changes in limbic system functional connectivity

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    Physical limits of flight performance in the heaviest soaring bird

    Get PDF
    Flight costs are predicted to vary with environmental conditions, and this should ultimately determine the movement capacity and distributions of large soaring birds. Despite this, little is known about how flight effort varies with environmental parameters. We deployed bio-logging devices on the world’s heaviest soaring bird, the Andean condor (Vultur gryphus), to assess the extent to which these birds can operate without resorting to powered flight. Our records of individual wingbeats in >216 hours of flight show that condors can sustain soaring across a wide range of wind and thermal conditions, only flapping for 1 % of their flight time. This is amongst the very lowest estimated movement costs in vertebrates. One bird even flew for > 5 hours without flapping, covering ~ 172 km. Overall, > 70 % of flapping flight was associated with take-offs. Movement between weak thermal updrafts at the start of the day also imposed a metabolic cost, with birds flapping towards the end of glides to reach ephemeral thermal updrafts. Nonetheless, the investment required was still remarkably low, and even in winter conditions with weak thermals, condors are only predicted to flap for ~ 2 s per km. The overall flight effort in the largest soaring birds therefore appears to be constrained by the requirements for take-off
    • 

    corecore