117 research outputs found

    The spectrum of EWSR1-rearranged neoplasms at a tertiary sarcoma centre; assessing 772 tumour specimens and the value of current ancillary molecular diagnostic modalities.

    Get PDF
    Background EWSR1 rearrangements were first identified in Ewing sarcoma, but the spectrum of EWSR1-rearranged neoplasms now includes many soft tissue tumour subtypes including desmoplastic small round cell tumour (DSRCT), myxoid liposarcoma (MLPS), extraskeletal myxoid chondrosarcoma (EMC), angiomatoid fibrous histiocytoma (AFH), clear cell sarcoma (CCS) and myoepithelial neoplasms. We analysed the spectrum of EWSR1-rearranged soft tissue neoplasms at our tertiary sarcoma centre, by assessing ancillary molecular diagnostic modalities identifying EWSR1-rearranged tumours and reviewing the results in light of our current knowledge of these and other Ewing sarcoma-like neoplasms.Methods We retrospectively analysed all specimens tested for EWSR1 rearrangements by fluorescence in situ hybridisation (FISH) and/or reverse transcription-PCR (RT-PCR) over a 7-year period.Results There was a total of 772 specimens. FISH was performed more often than RT-PCR (n=753, 97.5% vs n=445, 57.6%). In total, 210 (27.9%) specimens were FISH-positive for EWSR1 rearrangement compared to 111 (14.4%) that showed EWSR1 fusion transcripts with RT-PCR. Failure rates for FISH and RT-PCR were 2.5% and 18.0%. Of 109 round cell tumours with pathology consistent with Ewing sarcoma, 15 (13.8 %) cases were FISH-positive without an identifiable EWSR1 fusion transcript, 4 (3.7%) were FISH-negative but RT-PCR positive and 4 (3.7%) were negative for both. FISH positivity for DSRCT, MLPS, EMC, AFH and CCS was 86.3%, 4.3%, 58.5%, 60.0% and 87.9%, respectively. A positive FISH result led to diagnostic change in 40 (19.0%) EWSR1-rearranged cases. 13 FISH-positive cases remained unclassifiable.Conclusions FISH is more sensitive for identifying EWSR1 rearrangements than RT-PCR. However, there can be significant morphologic and immunohistochemical overlap between groups of EWSR1-rearranged neoplasms, with important prognostic and therapeutic implications. FISH and RT-PCR should be used as complementary modalities in diagnosing EWSR1-rearranged neoplasms, but as tumour groups harbouring EWSR1 rearrangements are increasingly characterised and because given translocations involving EWSR1 and its partner genes are not always specific for tumour types, it is critical that these are evaluated by specialist soft tissue surgical pathologists noting the morphologic and immunohistochemical context. As RT-PCR using commercial primers is limited to only the most prevalent EWSR1 fusion transcripts, the incorporation of high-throughput sequencing technologies into the standard diagnostic repertoire to assess for multiple molecular abnormalities of soft tissue tumours in parallel (including detection of newly characterised Ewing sarcoma-like tumours) might be the most effective and efficient means of ancillary diagnosis in future

    Rare Aggressive Behavior of <i>MDM2</i>-Amplified Retroperitoneal Dedifferentiated Liposarcoma, with Brain, Lung and Subcutaneous Metastases.

    Get PDF
    Dedifferentiated liposarcoma (DDL) is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, non-lipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo. DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct) liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2-amplified retroperitoneal liposarcoma

    The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis

    Get PDF
    The chromosome passenger complex (CPC) is a master regulator of mitosis. INCENP acts as a scaffold regulating CPC localisation and activity. During early mitosis the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN-box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled-coil domain acting as a spacer between the N and C terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ~32 nm long single alpha helical (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ~80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible dog-leash allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the stable chromatin of the inner centromere. Furthermore, by achieving this flexibility via a SAH domain, the CPC avoids a need for dimerization (required for coiled-coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation

    How Similar Are the Mice to Men? Between-Species Comparison of Left Ventricular Mechanics Using Strain Imaging

    Get PDF
    BACKGROUND: While mammalian heart size maintains constant proportion to whole body size, scaling of left ventricular (LV) function parameters shows a more complex scaling pattern. We used 2-D speckle tracking strain imaging to determine whether LV myocardial strains and strain rates scale to heart size. METHODS: We studied 18 mice, 15 rats, 6 rabbits, 12 dogs and 20 human volunteers by 2-D echocardiography. Relationship between longitudinal or circumferential strains/strain rates (S(Long)/SR(Long), S(Circ)/SR(Circ)), and LV end-diastolic volume (EDV) or mass were assessed by the allometric (power-law) equation Y = kM(β). RESULTS: Mean LV mass in individual species varied from 0.038 to 134 g, LV EDV varied from 0.015 to 102 ml, while RR interval varied from 81 to 1090 ms. While S(Long) increased with increasing LV EDV or mass (β values 0.047±0.006 and 0.051±0.005, p<0.0001 vs. 0 for both) S(Circ) was unchanged (p = NS for both LV EDV or mass). Systolic and diastolic SR(Long) and SR(Circ) showed inverse correlations to LV EDV or mass (p<0.0001 vs. 0 for all comparisons). The ratio between S(Long) and S(Circ) increased with increasing values of LV EDV or mass (β values 0.039±0.010 and 0.040±0.011, p>0.0003 for both). CONCLUSIONS: While S(Circ) is unchanged, S(Long) increases with increasing heart size, indicating that large mammals rely more on long axis contribution to systolic function. SR(Long) and SR(Circ), both diastolic and systolic, show an expected decrease with increasing heart size

    Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria

    Get PDF
    Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF

    Estrogen Induced Metastatic Modulators MMP-2 and MMP-9 Are Targets of 3,3′-Diindolylmethane in Thyroid Cancer

    Get PDF
    Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3'-diindolylmethane (DIM), to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor.Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA) studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E(2) enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9.Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease

    Ovarian cancer immunotherapy: opportunities, progresses and challenges

    Get PDF
    Due to the low survival rates from invasive ovarian cancer, new effective treatment modalities are urgently needed. Compelling evidence indicates that the immune response against ovarian cancer may play an important role in controlling this disease. We herein summarize multiple immune-based strategies that have been proposed and tested for potential therapeutic benefit against advanced stage ovarian cancer. We will examine the evidence for the premise that an effective therapeutic vaccine against ovarian cancer is useful not only for inducing remission of the disease but also for preventing disease relapse. We will also highlight the questions and challenges in the development of ovarian cancer vaccines, and critically discuss the limitations of some of the existing immunotherapeutic strategies. Finally, we will summarize our own experience on the use of patient-specific tumor-derived heat shock protein-peptide complex for the treatment of advanced ovarian cancer

    Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma

    Get PDF
    BACKGROUND: Cancer patients with advanced disease routinely exhaust available clinical regimens and lack actionable genomic medicine results, leaving a large patient population without effective treatments options when their disease inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates molecular sequencing data with functional assay data to develop patient-specific combination cancer treatments. METHODS: Tissue taken from a murine model of alveolar rhabdomyosarcoma was used to perform single agent drug screening and DNA/RNA sequencing experiments; results integrated via our computational modeling approach identified a synergistic personalized two-drug combination. Cells derived from the primary murine tumor were allografted into mouse models and used to validate the personalized two-drug combination. Computational modeling of single agent drug screening and RNA sequencing of multiple heterogenous sites from a single patient's epithelioid sarcoma identified a personalized two-drug combination effective across all tumor regions. The heterogeneity-consensus combination was validated in a xenograft model derived from the patient's primary tumor. Cell cultures derived from human and canine undifferentiated pleomorphic sarcoma were assayed by drug screen; computational modeling identified a resistance-abrogating two-drug combination common to both cell cultures. This combination was validated in vitro via a cell regrowth assay. RESULTS: Our computational modeling approach addresses three major challenges in personalized cancer therapy: synergistic drug combination predictions (validated in vitro and in vivo in a genetically engineered murine cancer model), identification of unifying therapeutic targets to overcome intra-tumor heterogeneity (validated in vivo in a human cancer xenograft), and mitigation of cancer cell resistance and rewiring mechanisms (validated in vitro in a human and canine cancer model). CONCLUSIONS: These proof-of-concept studies support the use of an integrative functional approach to personalized combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and without actionable DNA sequencing-based therapy
    corecore