1,190 research outputs found

    A 1-acetamido derivative of 6-epi-valienamine: an inhibitor of a diverse group of β-N-acetylglucosaminidases

    Get PDF
    The synthesis of an analogue of 6-epi-valienamine bearing an acetamido group and its characterisation as an inhibitor of β-N-acetylglucosaminidases are described. The compound is a good inhibitor of both human O-GlcNAcase and human β-hexosaminidase, as well as two bacterial β-N-acetylglucosaminidases. A 3-D structure of the complex of Bacteroides thetaiotaomicron BtGH84 with the inhibitor shows the unsaturated ring is surprisingly distorted away from its favoured solution phase conformation and reveals potential for improved inhibitor potency

    Repositioning the Catalytic Triad Aspartic Acid of Haloalkane Dehalogenase: Effects on Stability, Kinetics, and Structure

    Get PDF
    Haloalkane dehalogenase (DhlA) catalyzes the hydrolysis of haloalkanes via an alkyl-enzyme intermediate. The covalent intermediate, which is formed by nucleophilic substitution with Asp124, is hydrolyzed by a water molecule that is activated by His289. The role of Asp260, which is the third member of the catalytic triad, was studied by site-directed mutagenesis. Mutation of Asp260 to asparagine resulted in a catalytically inactive D260N mutant, which demonstrates that the triad acid Asp260 is essential for dehalogenase activity. Furthermore, Asp260 has an important structural role, since the D260N enzyme accumulated mainly in inclusion bodies during expression, and neither substrate nor product could bind in the active-site cavity. Activity for brominated substrates was restored to D260N by replacing Asn148 with an aspartic or glutamic acid. Both double mutants D260N+N148D and D260N+N148E had a 10-fold reduced kcat and 40-fold higher Km values for 1,2-dibromoethane compared to the wild-type enzyme. Pre-steady-state kinetic analysis of the D260N+N148E double mutant showed that the decrease in kcat was mainly caused by a 220-fold reduction of the rate of carbon-bromine bond cleavage and a 10-fold decrease in the rate of hydrolysis of the alkyl-enzyme intermediate. On the other hand, bromide was released 12-fold faster and via a different pathway than in the wild-type enzyme. Molecular modeling of the mutant showed that Glu148 indeed could take over the interaction with His289 and that there was a change in charge distribution in the tunnel region that connects the active site with the solvent. On the basis of primary structure similarity between DhlA and other α/β-hydrolase fold dehalogenases, we propose that a conserved acidic residue at the equivalent position of Asn148 in DhlA is the third catalytic triad residue in the latter enzymes.

    Secondary-Structure Design of Proteins by a Backbone Torsion Energy

    Get PDF
    We propose a new backbone-torsion-energy term in the force field for protein systems. This torsion-energy term is represented by a double Fourier series in two variables, the backbone dihedral angles phi and psi. It gives a natural representation of the torsion energy in the Ramachandran space in the sense that any two-dimensional energy surface periodic in both phi and psi can be expanded by the double Fourier series. We can then easily control secondary-structure-forming tendencies by modifying the torsion-energy surface. For instance, we can increase/decrease the alpha-helix-forming-tendencies by lowering/raising the torsion-energy surface in the alpha-helix region and likewise increase/decrease the beta-sheet-forming tendencies by lowering/raising the surface in the beta-sheet region in the Ramachandran space. We applied our approach to AMBER parm94 and AMBER parm96 force fields and demonstrated that our modifications of the torsion-energy terms resulted in the expected changes of secondary-structure-forming-tendencies by performing folding simulations of alpha-helical and beta-hairpin peptides.Comment: 13 pages, (Revtex4), 5 figure

    The PDZ domain of the SpoIVB serine peptidase facilitates multiple functions

    Get PDF
    During spore formation in Bacillus subtilis, the SpoIVB protein is a critical component of the sigma (K) regulatory checkpoint. SpoIVB has been shown to be a serine peptidase that is synthesized in the spore chamber and which self-cleaves, releasing active forms. These forms can signal proteolytic processing of the transcription factor sigma (K) in the outer mother cell chamber of the sporulating cell. This forms the basis of the sigma (K) checkpoint and ensures accurate sigma (K)-controlled gene expression. SpoIVB has also been shown to activate a second distinct process, termed the second function, which is essential for the formation of heat-resistant spores. In addition to the serine peptidase domain, SpoIVB contains a PDZ domain. We have altered a number of conserved residues in the PDZ domain by site-directed mutagenesis and assayed the sporulation phenotype and signaling properties of mutant SpoIVB proteins. Our work has revealed that the SpoIVB PDZ domain could be used for up to four distinct processes, (i) targeting of itself for trans proteolysis, (11) binding to the protease inhibitor BofC, (iii) signaling of pro-sigma (K) processing, and (iv) signaling of the second function of SpoIVB

    Suicide inhibition of alpha-oxamine synthases:structures of the covalent adducts of 8-amino-7-oxononanoate synthase with trifluoroalanine

    Get PDF
    The suicide inhibition of the α-oxamine synthases by the substrate analog, L-trifluoroalanine was investigated. The inhibition resulted in the formation of a complex with loss of all three fluorine atoms. Decarboxylation and loss of fluoride occurred immediately after aldimine formation. The inherent flexibility could allow the difluorinated intermediate complex to adopt a suitable conformation. Decarboxylation in the normal mechanism occurs after formation of the ketoacid intermediate.link_to_subscribed_fulltex

    Protein dynamics with off-lattice Monte Carlo moves

    Full text link
    A Monte Carlo method for dynamics simulation of all-atom protein models is introduced, to reach long times not accessible to conventional molecular dynamics. The considered degrees of freedom are the dihedrals at Cα_\alpha-atoms. Two Monte Carlo moves are used: single rotations about torsion axes, and cooperative rotations in windows of amide planes, changing the conformation globally and locally, respectively. For local moves Jacobians are used to obtain an unbiased distribution of dihedrals. A molecular dynamics energy function adapted to the protein model is employed. A polypeptide is folded into native-like structures by local but not by global moves.Comment: 10 pages, 4 Postscript figures, uses epsf.sty and a4.sty; scheduled tentatively for Phys.Rev.E issue of 1 March 199

    Three-dimensional Structure of L-2-Haloacid Dehalogenase from Xanthobacter autotrophicus GJ10 Complexed with the Substrate-analogue Formate

    Get PDF
    The L-2-haloacid dehalogenase from the 1,2-dichloroethane degrading bacterium Xanthobacter autotrophicus GJ10 catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. Its crystal structure was solved by the method of multiple isomorphous replacement with incorporation of anomalous scattering information and solvent flattening, and was refined at 1.95-Å resolution to an R factor of 21.3%. The three-dimensional structure is similar to that of the homologous L-2-haloacid dehalogenase from Pseudomonas sp. YL (1), but the X. autotrophicus enzyme has an extra dimerization domain, an active site cavity that is completely shielded from the solvent, and a different orientation of several catalytically important amino acid residues. Moreover, under the conditions used, a formate ion is bound in the active site. The position of this substrate-analogue provides valuable information on the reaction mechanism and explains the limited substrate specificity of the Xanthobacter L-2-haloacid dehalogenase.

    An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein

    Get PDF
    Campylobacter jejuni is a Gram-negative food-borne pathogen associated with gastroenteritis in humans as well as cases of the autoimmune disease Guillain Barre syndrome. C. jejuni is asaccharolytic because it lacks an active glycolytic pathway for the use of sugars as a carbon source. This suggests an increased reliance on amino acids as nutrients and indeed the genome sequence of this organism indicates the presence of a number of amino acid uptake systems. Cj0982, also known as CjaA, is a putative extracytoplasmic solute receptor for one such uptake system as well as a major surface antigen and vaccine candidate. The crystal structure of Cj0982 reveals a two-domain protein with density in the enclosed cavity between the domains that clearly defines the presence of a bound cysteine ligand. Fluorescence titration experiments were used to demonstrate that Cj0982 binds cysteine tightly and specifically with a K-d of similar to 10(-7) M consistent with a role as a receptor for a high- affinity transporter. These data imply that Cj0982 is the binding protein component of an ABC-type cysteine transporter system and that cysteine uptake is important in the physiology of C. jejuni

    Discrete molecular dynamics simulations of peptide aggregation

    Get PDF
    We study the aggregation of peptides using the discrete molecular dynamics simulations. At temperatures above the alpha-helix melting temperature of a single peptide, the model peptides aggregate into a multi-layer parallel beta-sheet structure. This structure has an inter-strand distance of 0.48 nm and an inter-sheet distance of 1.0 nm, which agree with experimental observations. In this model, the hydrogen bond interactions give rise to the inter-strand spacing in beta-sheets, while the Go interactions among side chains make beta-strands parallel to each other and allow beta-sheets to pack into layers. The aggregates also contain free edges which may allow for further aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
    corecore