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We propose a new backbone-torsion-energy term in the force field for protein sys-
tems. This torsion-energy term is represented by a double Fourier series in two variables,
the backbone dihedral angles φ and ψ. It gives a natural representation of the torsion
energy in the Ramachandran space in the sense that any two-dimensional energy sur-
face periodic in both φ and ψ can be expanded by the double Fourier series. We can
then easily control secondary-structure-forming tendencies by modifying the torsion-
energy surface. For instance, we can increase/decrease the α-helix-forming-tendencies
by lowering/raising the torsion-energy surface in the α-helix region and likewise in-
crease/decrease the β-sheet-forming tendencies by lowering/raising the surface in the β-
sheet region in the Ramachandran space. We applied our approach to AMBER parm94
and AMBER parm96 force fields and demonstrated that our modifications of the torsion-
energy terms resulted in the expected changes of secondary-structure-forming-tendencies
by performing folding simulations of α-helical and β-hairpin peptides.
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§1. Introduction

A force field (or potential energy) for protein systems is necessary to perform molecular sim-

ulations based on Monte Carlo (MC) and molecular dynamics (MD) methods. Well-known force

fields are, for instance, AMBER,1–3 CHARMM,4 OPLS,5,6 GROMOS,7 and ECEPP.8 These force

fields have been parameterized to fit experimental data of small molecules and, for some terms,

the results of quantum chemistry calculations and MD simulations. We have recently carried out

detailed comparisons of three versions of AMBER (parm94,1 parm96,2 and parm993), CHARMM,4

OPLS-AA/L,6 and GROMOS7 by generalized-ensemble simulations9 of two small peptides in ex-

plicit solvent.10,11 The results of these comparisons indicated that these force fields yield quite

different secondary-structure-forming tendencies. It was shown that AMBER parm94 is the most

(and too much) α-helix-forming among the six force fields studied and that AMBER parm99 and

CHARMM give ample amount of α-helix structures, whereas AMBER parm96, OPLS-AA/L, and

GROMOS are more β-sheet-forming than the rest.10,11 These results were confirmed by the folding

simulations of the two peptides with implicit solvent model.12–14 Our conclusion was that we need

to refine and improve the existing force-field parameters in order to yield the secondary-structure-
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forming tendencies that agree with experimental implications.10–14 Among the force-field terms,

the torsion-energy term is the most problematic. For instance, the parm94, parm96, and parm99

versions of AMBER differ mainly in the backbone-torsion-energy parameters. The main changes

from OPLS-AA to OPLS-AA/L can also be found in the torsion-energy term.6 Other trials of

force-field refinement mainly concentrate on the torsion-energy terms. These modifications of the

torsion energy are usually based on quantum chemistry calculatioins.15–19 It was also proposed

to set the backbone torsion-energy term simply to zero.20 We have proposed another force-field

refinement procedures.12–14 Using the standard functional forms of the force fields, we refine the

force-field parameters so that they are the most consistent with the coordinates of proteins in the

Protein Data Bank (PDB) database. This is achieved by minimization of forces acting on the atoms

with the coordinates of the PDB with respect to the force-field parameters. We found that our

refinement of partial-charge and backbone-torsion-energy parameters resulted in the improvement

of three versions of AMBER (parm94, parm96, and parm99), CHARMM, and OPLS-AA.12–14

In this article, we propose a new backbone-torsion-energy term, which is represented by a

double Fourier series in two variables, the backbone dihedral angles φ and ψ. This expression gives a

natural representation of the torsion energy in the Ramachandran space21 in the sense that any two-

dimensional energy surface periodic in both φ and ψ can be expanded by the double Fourier series.

We can then easily control secondary-structure-forming tendencies by modifying the backbone-

torsion-energy surface. We accommodated our approach to AMBER parm94 and AMBER parm96

and tested whether our modifications of the backbone-torsion-energy term resulted in the expected

change of secondary-structure-forming-tendencies by performing folding simulations of α-helical

and β-hairpin peptides.

In section 2 the details of the double Fourier series as the backbone-torsion-energy term are

given. In section 3 the results of applications of the double Fourier series to modifications of

AMBER parm94 and parm96 force fields are presented. Section 4 is devoted to conclusions.

§2. Methods

The existing all-atom force fields for protein systems such as AMBER and CHARMM use

essentially the same functional forms for the conformational potential energy Econf except for

minor differences. Econf can be written as, for instance,

Econf = EBL + EBA + Etorsion + Enonbond . (1)

Here, EBL, EBA, Etorsion, and Enonbond represent the bond-stretching term, the bond-bending term,

the torsion-energy term, and the nonbonded energy term, respectively. The torsion energy is usually

given by

Etorsion =
∑

dihedral angle Φ

∑
n

Vn

2
[1 + cos(nΦ− γn)] , (2)
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where the first summation is taken over all dihedral angles Φ (both in the backbone and in the side

chains), n is the number of waves, γn is the phase, and Vn is the Fourier coefficient. Separating the

contributions E(φ, ψ) of the backbone dihedral angles φ and ψ from the rest of the torsion terms

Erest, we can write

Etorsion = E(φ, ψ) + Erest , (3)

where we have

E(φ, ψ) =
∑
m

Vm

2
[1 + cos(mφ− γm)] +

∑
n

Vn

2
[1 + cos(nψ − γn)] . (4)

For example, the coefficients for the cases of AMBER parm94 and AMBER parm96 are summarized

in Table I, and we can rewrite E(φ, ψ) in Eq. (4) as follows:

Eparm94(φ, ψ) = 2.7− 0.2 cos 2φ− 0.75 cosψ − 1.35 cos 2ψ − 0.4 cos 4ψ , (5)

Eparm96(φ, ψ) = 2.3 + 0.85 cosφ− 0.3 cos 2φ + 0.85 cosψ − 0.3 cos 2ψ . (6)

The backbone-torsion-energy term E(φ, ψ) in Eq. (4) is a sum of two one-dimensional Fourier

series: one is for φ and the other for ψ. The two variables φ and ψ are independent, and no

correlation of φ and ψ can be incorporated. Any periodic function of φ and ψ with period 2π can

be expanded by a double Fourier series. As a simple generalization of E(φ, ψ), we therefore propose

to express this backbone torsion energy by the following double Fourier series:

E(φ, ψ) = a +
∞∑

m=1

(bm cosmφ + cm sinmφ)

+
∞∑

n=1

(dn cosnψ + en sinnψ)

+
∞∑

m=1

∞∑

n=1

(fmn cosmφ cosnψ + gmn cosmφ sinnψ

+ hmn sinmφ cosnψ + imn sinmφ sinnψ) . (7)

Here, m and n are the numbers of waves, a, bm, cm, dn, en, fmn, gmn, hmn, and imn are the Fourier

coefficients. This equation includes cross terms in φ and ψ, while the original term in Eq. (4) has

no mixing of φ and ψ. Therefore, our new torsion-energy term can represent more complex energy

surface than the conventional one. The Fourier coefficients, by definition, are given by

c =
1
α

∫ π

−π
dφ

∫ π

−π
dψ E(φ, ψ)x(φ, ψ) =

( π

180

)2 1
α

∫ 180

−180
dφ̃

∫ 180

−180
dψ̃ E

( π

180
φ̃,

π

180
ψ̃

)
x

( π

180
φ̃,

π

180
ψ̃

)
,

(8)

where α are the normalization constants and x(φ, ψ) are the basis functions for the Fourier series.

Table II summarizes these coefficients and functions. Here, φ and ψ are given in radians, and φ̃
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and ψ̃ are in degrees (φ = π
180 φ̃, ψ = π

180 ψ̃). Hereafter, angular quantities without tilde and with

tilde are in radians and in degrees, respectively.

Finally, E(φ, ψ) in Eq. (7) and Erest in Eq. (3) define our torsion-energy term in Eq. (1) (instead

of Eq. (2)):

Etorsion = E(φ, ψ) + Erest . (9)

The double Fourier series in Eq. (7) is particularly useful, because it describes the backbone-

torsion-energy surface in the Ramachandran space. The Fourier series can express the torsion-

energy surface E(φ, ψ) that was obtained by any method including quantum chemistry calcula-

tions.6,15–19

Moreover, one can refine the existing backbone-torsion-energy term and control the secondary-

structure-forming tendencies of the force fields. For example, α-helix is obtained for (φ̃, ψ̃) ≈
(−57◦,−47◦), 310-helix for (φ̃, ψ̃) ≈ (−49◦,−26◦), π-helix for (φ̃, ψ̃) ≈ (−57◦,−70◦), parallel β-

sheet for (φ̃, ψ̃) ≈ (−119◦, 113◦), antiparallel β-sheet for (φ̃, ψ̃) ≈ (−139◦, 135◦), and so on.21 Hence,

if the existing force field gives, say, too little α-helix-forming tendency compared to experimental

results, one can lower the backbone-torsion-energy surface near (φ̃, ψ̃) = (−57◦,−47◦) in order to

enhance α-helix formations.

We can thus write

E(φ, ψ) = E(φ, ψ)− f(φ, ψ) , (10)

where E(φ, ψ) is the existing backbone-torsion-energy term that we want to refine and f(φ, ψ) is a

function that has peaks around the corresponding regions where specific secondary structures are to

be enhanced. There are many possible choices for f(φ, ψ). For instance, one can use the following

function when one wants to lower the torsion-energy surface in a single region near (φ, ψ) = (φ0, ψ0):

f(φ, ψ) =





A exp
(

B

(φ− φ0)2 + (ψ − ψ0)2 − r0
2

)
, for (φ− φ0)2 + (ψ − ψ0)2 < r0

2 ,

0 , otherwise ,

(11)

where A, B, and r0 are constants that we adjust for refinement. In this case, the energy surface

is lowered by f(φ, ψ) in a circular region of radius r0, which is centered at (φ, ψ) = (φ0, ψ0). Note

that we should also impose periodic boundary conditions on f(φ, ψ).

We then express E(φ, ψ) in Eq. (10) in terms of the double Fourier series in Eq. (7), where the

Fourier coefficients are obtained from Eq. (8). Hence, we can fine-tune the backbone-torsion-energy

term by the above procedure so that it yields correct secondary-structure-forming tendencies.
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§3. Results and Discussion

We now present the results of the applications of our backbone torsion energy in Eq. (7). In

this section, we consider the following truncated Fourier series:

E(φ, ψ) = a + b1 cosφ + c1 sinφ + b2 cos 2φ + c2 sin 2φ

+ d1 cosψ + e1 sinψ + d2 cos 2ψ + e2 sin 2ψ

+ f11 cosφ cosψ + g11 cosφ sinψ

+ h11 sinφ cosψ + i11 sinφ sinψ . (12)

This function has 13 Fourier-coefficient parameters. We will see below that this number of Fourier

terms is sufficient for most of our purposes, but that for some cases more number of Fourier terms

are preferred.

We first check how well the truncated Fourier series in Eq. (12) can reproduce the original

AMBER parm94 and AMBER parm96 backbone-torsion-energy terms in Eqs. (5) and (6). Because

these functions are already the sum of one-dimensional Fourier series and subsets of the double

Fourier series in Eq. (7), the Fourier coefficients in Eq. (8) can be analytically calculated and agree

with those in Eqs. (5) and (6) except for the last one (that for cos 4ψ) in Eq. (5). This term is missing

in Eq. (12). These cases thus give us good test of numerical integrations in Eq. (8). The numerical

integrations were evaluated as follows. We divided the Ramachandran space (−180◦ < φ̃ < 180◦,

−180◦ < ψ̃ < 180◦) into unit square cells of side length ε̃ (in degrees). Hence, there are (360/ε̃)2

unit cells altogether. The double integral on the right-hand side of Eq. (8) was approximated by

the sum of
[
E

(
π

180 φ̃, π
180 ψ̃

)
x

(
π

180 φ̃, π
180 ψ̃

)]
× (ε̃)2, where each E

(
π

180 φ̃, π
180 ψ̃

)
x

(
π

180 φ̃, π
180 ψ̃

)
was

evaluated at one of the four corners of each unit cell. We tried two values of ε̃ (1◦ and 10◦). Both

cases gave exact agreement of Fourier coefficients with the results of the analytical integrations for

at least six digits (see Tables III and IV below).

In Fig. 1 we compare the backbone-torsion-energy surfaces of the original AMBER parm94 and

AMBER parm96 with those of the corresponding double Fourier series in Eq. (12). Hereafter, the

primed labels for figures such as (a’) indicate that the results are those of the double Fourier series.

As can be seen from Figs. 1(b) and 1(b’), the backbone-torsion-energy surfaces are in complete

agreement for AMBER parm96, whereas we see a little difference for AMBER parm94 between

Figs. 1(a) and 1(a’). As discussed above, this slight difference for AMBER parm94 reflects the fact

that the cos 4ψ term in Eq. (5) is missing in the truncated double Fourier series in Eq. (12).

We now consider the double Fourier series of non-trigonometric functions. The functions are

those in Eqs. (10) and (11). We try to fine-tune the original AMBER parm94 and AMBER

parm96 force fields by subtracting f(φ, ψ) in Eq. (11) from the original functions. The criterion for

fine-tuning is, for instance, whether the refined force fields yield better agreement of the secondary-

structure-forming tendencies with experimental implications than the original ones. For this we
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need good experimental data. Because the purpose of the present article is to test whether or not we

can control the secondary-structure-forming tendencies, we simply consider extreme cases where

we try to modify the existing force fields so that desired secondary structures may be obtained

regardless of the tendencies of the original force fields. Note that the original AMBER parm94 and

AMBER parm96 favor α-helix and β-sheet, respectively.10–14

The function f(φ, ψ) in Eq. (11) reduces the value of E(φ, ψ) in a circle of radius r0 with the

center located at (φ0, ψ0). We used r̃0 = 100◦ and B̃ = 5, 000 (degrees)2. The coefficient A is

calculated by Eq. (11) from the other parameters f(φ̃0, ψ̃0), r̃0, and B̃. Namely, we have

A = f(φ̃0, ψ̃0) exp

(
B̃

r̃2
0

)
. (13)

We used (φ̃0, ψ̃0) = (−57◦,−47◦) and (φ̃0, ψ̃0) = (−130◦, 125◦) in order to enhance α-helix-

forming tendency and β-sheet-forming tendency, respectively. The central values f(φ̃0, ψ̃0) that we

used were 3.0 kcal/mol and 6.0 kcal/mol for enhancing α-helix and β-sheet, respectively, in the

case of AMBER parm94. They were both 3.0 kcal/mol in the case of AMBER parm96. We remark

that the large value of f(φ̃0, ψ̃0), 6.0 kcal/mol, that was necessary to enhance β-sheet in the case

of AMBER parm94 reflects the fact that the original force field favors α-helix so much.

In Fig. 2 we show the backbone-torsion-energy surfaces modified according to Eq. (10). We see

that Eq. (10) reduces the torsion energy in the circular regions that correspond to the α-helix region

(a1 and b1) and the β-sheet region (a2 and b2). Hence, there are four cases: α-helix is enhanced

from the original AMBER parm94 (a1) and AMBER parm96 (b1), and β-sheet is enhanced from

the original AMBER parm94 (a2) and AMBER parm96 (b2).

These modified backbone-torsion-energy functions were expanded by the truncated double

Fourier series in Eq. (12) by evaluating the corresponding Fourier coefficients from Eq. (8). For the

numerical integration we again tried two values of the bin size ε̃ (1◦ and 10◦). The obtained Fourier

coefficients are summarized in Table III in the case of AMBER parm94 and Table IV in the case

of AMBER parm96. For comparisons, the Fourier coefficients of the original AMBER force fields

(before modifications) are also listed. We see that the two choices of the bin size ε̃ gave essentially

the same results (up to at least 3 digits).

In Fig. 3 we show the backbone-torsion-energy surfaces represented by the truncated double

Fourier series. Comparing these with the original ones in Fig. 2, we find that the overall features of

the energy surfaces are well reproduced by the Fourier series. If more accuracy is desired, we can

simply increase the number of Fourier terms in the expansion. As we see below, the present accuracy

of the Fourier series was sufficient for the purpose of controlling the secondary-structure-forming

tendencies towards α-helix or β-sheet.

We examined the effects of the above modifications of the backbone-torsion-energy terms in

AMBER parm94 and AMBER parm96 (towards specific secondary structures) by performing the
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folding simulations of two peptides, C-peptide of ribonuclease A and the C-terminal fragment of the

B1 domain of streptococcal protein G, which is sometimes referred to as G-peptide.22 The C-peptide

has 13 residues and its amino-acid sequence is Lys-Glu-Thr-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-

Met. This peptide has been extensively studied by experiments and is known to form an α-helix

structure.23,24 Because the charges at peptide termini are known to affect helix stability,23,24 we

blocked the termini by a neutral COCH3- group and a neutral -NH2 group. The G-peptide has 16

residues and its amino-acid sequence is Gly-Glu-Trp-Thr-Tyr-Asp-Asp-Ala-Thr-Lys-Thr-Phe-Thr-

Val-Thr-Glu. The termini were kept as the usual zwitter ionic states, following the experimental

conditions.22,25,26 This peptide is known to form a β-hairpin structure by experiments.22,25,26

Simulated annealing27 MD simulations were performed for both peptides from fully extended

initial conformations, where the four versions of the truncated double Fourier series (which were

described in Tables III and IV and in Fig. 3) were used for the backbone-torsion-energy terms

of AMBER parm94 and AMBER parm96 force fields. For comparisons, the simulations with the

original AMBER parm94 and parm96 force fields were also performed. The unit time step was set

to 1.0 fs. Each simulation was carried out for 1 ns (hence, it consisted of 1,000,000 MD steps).

The temperature during MD simulations was controlled by Berendsen’s method.28 For each run

the temperature was decreased exponentially from 2,000 K to 250 K. As for solvent effects, we used

the GB/SA model.29,30 We modified and used the program package TINKER version 4.131 for all

the simulations. For both peptides, these folding simulations were repeated 60 times with different

sets of randomly generated initial velocities.

In Table V, the numbers of obtained conformations (final conformations) with α-helix struc-

tures and β-hairpin structures are listed for the case of C-peptide, which is known to form α-helix

structures by experiments. We used DSSP32 for the criterions of secondary-structure formations.

We see that all 60 conformations obtained from the simulations using the original AMBER parm94

are α-helix structures and that for the original AMBER parm96, 14 out of 60 conformations are

α-helix structures and 16 out of 60 conformations are β-hairpin structures. The results confirm

that the original AMBER parm94 strongly favors α-helix structures and that the original AM-

BER parm96 slightly favors β-hairpin structures (because this peptide should form α-helices).10,12

However, for both AMBER parm94 and AMBER parm96 modified to enhance α-helix-forming ten-

dency, almost all (60 and 59) conformations are α-helix structures and there are no conformations

with β-hairpin structures. For AMBER parm94 and AMBER parm96 modified to enhance β-sheet-

forming tendency, on the other hand, about half the conformations exhibit β-hairpin structures and

no α-helix structures are found.

In Fig. 4 we show five (out of 60) lowest-energy final conformations of C-peptide obtained by

the simulated annealing MD simulations for the six cases. According to Table V, there are almost

100 % α-helix formations in three cases, namely, the original AMBER parm94, the AMBER parm94
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modified towards α-helix, and the AMBER parm96 modified towards α-helix. Here in Fig. 4 we see

the differences in the three cases: the modified AMBER parm94 and parm96 favor α-helix structures

more than the original AMBER parm94 in the sense that the obtained helices are more extended

(and almost entirely helical) in the former cases. Moreover, we see clear β-hairpin formations with

extended β strands in the cases of the AMBER parm94 and AMBER parm96 modified towards

β-sheet.

In Table VI, the numbers of obtained conformations (final conformations) with α-helix struc-

tures and β-hairpin structures are listed for the case of G-peptide, which is known to form β-hairpin

structures by experiments. The results are similar to those in Table V. We see that all 60 conforma-

tions are α-helix structures in the cases of the original AMBER parm94 and the AMBER parm94

and AMBER parm96 that were modified to enhance α-helix structures. For AMBER parm94 and

AMBER parm96 that were modified to enhance β-sheet-forming tendency, the conformations ex-

hibit β-hairpin structures and no α-helix structures are found. One difference in the results of

the two Tables is that the original AMBER parm96 clearly favors β-hairpin structures in the case

of G-peptide, while in the case of C-peptide about the same tendency is observed for α-helix and

β-hairpin with this original force field. Our modifications of the force fields resulted in the expected

changes in the secondary-structure formations. This is again more clearly shown in Fig. 5 where

five lowest-energy final conformations of G-peptide are displayed for the six cases. Overall features

are the same as in Fig. 4.

Therefore, regardless of the secondary-structure-forming tendencies of the original force fields,

our modifications of the backbone-torsion-energy term succeeded in enhancing the desired secondary

structures.

§4. Conclusions

In this article, we proposed to use a double Fourier series in two backbone dihedral angles, φ and

ψ, for the backbone-torsion-energy term in protein force fields. This is a natural generalization of

the conventional torsion-energy terms. It is particularly useful in controlling secondary-structure-

forming tendencies, because any function in the Ramachandran space can be expanded by this

double Fourier series. We can easily modify the existing force fileds so that specified secondary-

struture-forming tendencies are enhanced, by lowering the backbone-torsion-energy surface in the

corresponding region of the Ramachandran space. We demonstrated this taking the examples of

AMBER parm94 and AMBER parm96 force fields.

Besides the above “manual” adjustment of the force fields, we can also apply our force-field

refinement method12–14 to this double Fourier series. Namely, we can determine the values of the

Fourier coefficients so that the forces acting on the atoms with the coodinates of the PDB database

become minimal. Work is underway in this direction.
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Table I. Torsion-energy parameters for the backbone dihedral angles φ and ψ for AMBER parm94 and AMBER
parm96 in Eq. (4).

φ ψ

m
Vm

2
(kcal/mol) γm (radians) n

Vn

2
(kcal/mol) γn (radians)

parm94 2 0.2 π 1 0.75 π

2 1.35 π

4 0.4 π

parm96 1 0.85 0 1 0.85 0

2 0.3 π 2 0.3 π
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Table II. Fourier coefficients c, normalization constants α, and the basis functions x(φ, ψ) for the double Fourier
series of the backbone torsion energy E(φ, ψ) in Eqs. (7) and (8).

c α x(φ, ψ)

a 4π2 1

bm 2π2 cosmφ

cm 2π2 sinmφ

dn 2π2 cosnψ

en 2π2 sinnψ

fmn π2 cosmφ cosnψ

gmn π2 cosmφ sinnψ

hmn π2 sinmφ cosnψ

imn π2 sinmφ sinnψ
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Table III. Fourier coefficients in Eq. (12) obtained from the numerical evaluations of the integrals in Eq. (8). “org94”
stands for the original AMBER parm94 force field. “mod94(α)” and “mod94(β)” stand for AMBER parm94
force fields that were modified to enhance α-helix structures and β-sheet structures, respectively, by Eqs. (10)
and (11). The bin size ε̃ is the length of the sides of each unit square cell for the numerical integration in Eq. (8).

bin size ε̃ 1◦ 10◦

coefficient org94 mod94(α) mod94(β) org94 mod94(α) mod94(β)

a 2.700000 2.308359 1.916719 2.700000 2.308370 1.916742

b1 0.000000 −0.330937 0.781150 0.000000 −0.331053 0.781041

b2 −0.200000 −0.101549 −0.115937 −0.200000 −0.101513 −0.115970

c1 0.000000 0.509599 0.930938 0.000000 0.509517 0.930809

c2 0.000000 0.221123 −0.476745 0.000000 0.221100 −0.476558

d1 −0.750000 −1.164401 −0.052959 −0.750000 −1.164500 −0.052874

d2 −1.350000 −1.333115 −1.184428 −1.350000 −1.333073 −1.184340

e1 0.000000 0.444390 −0.995478 0.000000 0.444289 −0.995599

e2 0.000000 0.241460 0.454905 0.000000 0.241451 0.455147

f11 0.000000 −0.342789 −0.680493 0.000000 −0.343087 −0.680497

g11 0.000000 0.367596 0.971845 0.000000 0.367697 0.971851

h11 0.000000 0.527849 −0.810980 0.000000 0.527949 −0.810985

i11 0.000000 −0.566049 1.158199 0.000000 −0.565751 1.158206
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Table IV. Fourier coefficients in Eq. (12) obtained from the numerical evaluations of the integrals in Eq. (8). “org96”
stands for the original AMBER parm96 force field. “mod96(α)” and “mod96(β)” stand for AMBER parm96
force fields that were modified to enhance α-helix structures and β-sheet structures, respectively, by Eqs. (10)
and (11). See also the caption of Table III.

bin size ε̃ 1◦ 10◦

coefficient org96 mod96(α) mod96(β) org96 mod96(α) mod96(β)

a 2.300000 1.908359 1.908359 2.300000 1.908370 1.908371

b1 0.850000 0.519063 1.240575 0.850000 0.518947 1.240521

b2 −0.300000 −0.201549 −0.257968 −0.300000 −0.201513 −0.257985

c1 0.000000 0.509599 0.465469 0.000000 0.509517 0.465404

c2 0.000000 0.221123 −0.238372 0.000000 0.221100 −0.238279

d1 0.850000 0.435599 1.198520 0.850000 0.435500 1.198563

d2 −0.300000 −0.283115 −0.217214 −0.300000 −0.283073 −0.217170

e1 0.000000 0.444390 −0.497739 0.000000 0.444289 −0.497800

e2 0.000000 0.241460 0.227452 0.000000 0.241451 0.227573

f11 0.000000 −0.342789 −0.340247 0.000000 −0.343087 −0.340249

g11 0.000000 0.367596 0.485922 0.000000 0.367697 0.485925

h11 0.000000 0.527849 −0.405490 0.000000 0.527949 −0.405492

i11 0.000000 −0.566049 0.579100 0.000000 −0.565751 0.579103
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Table V. Number of final conformations with secondary structures obtained from the folding simulations of C-peptide.
The total number of folding simulations in each case was 60. See the captions of Tables III and IV. “α-helix”
stands for the number of conformations including the amino acids which were identified to be “H”(= α-helix) by
DSSP. “β-hairpin” stands for the number of conformations including the amino acids which were identified to be
“B”(= residue in isolated β-bridge) or “E”(= extended strand, participating in β-ladder) by DSSP.

secondary structure org94 mod94(α) mod94(β) org96 mod96(α) mod96(β)

α-helix 60/60 60/60 0/60 14/60 59/60 0/60

β-hairpin 0/60 0/60 29/60 16/60 0/60 34/60
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Table VI. Number of final conformations with secondary structures obtained from the folding simulations of G-
peptide. See the caption of Table V.

secondary structure org94 mod94(α) mod94(β) org96 mod96(α) mod96(β)

α-helix 60/60 60/60 0/60 12/60 60/60 0/60

β-hairpin 0/60 0/60 31/60 23/60 0/60 22/60
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Fig. 1. Backbone-torsion-energy surfaces of AMBER force fields. The backbone dihedral angles φ̃ and ψ̃ are in
degrees. (a) and (b) are those of the original AMBER parm94 and the original AMBER parm96, respectively.
(a’) and (b’) are those of (a) and (b), respectively, that are expressed by the truncated double Fourier series in
Eq. (12). The contour lines are drawn every 0.5 kcal/mol.
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Fig. 2. Backbone-torsion-energy surfaces of AMBER force fields that were modified by Eqs. (10) and (11). (a1)
and (a2) are those of AMBER parm94 force fields that were modified to enhance α-helix structures and β-sheet
structures, respectively. (b1) and (b2) are those of AMBER parm96 force fields that were modified to enhance
α-helix structures and β-sheet structures, respectively. See also the caption of Fig. 1.
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Fig. 3. Backbone-torsion-energy surfaces of AMBER force fields that were modified by Eqs. (10) and (11) and
expanded by the truncated double Fourier series in Eq. (12). (a1’) and (a2’) are those of AMBER parm94 force
fields that were modified to enhance α-helix structures and β-sheet structures, respectively. (b1’) and (b2’) are
those of AMBER parm96 force fields that were modified to enhance α-helix structures and β-sheet structures,
respectively. See also the caption of Fig. 1.
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Fig. 4. Five lowest-energy final conformations of C-peptide obtained from six sets of 60 simulated annealing MD
runs. (a) and (b) are the results of the original AMBER parm94 and the original AMBER parm96 force fields,
respectively. (a1’) and (a2’) are those of the truncated double Fourier series of AMBER parm94 force fields that
were modified to enhance α-helix structures and β-sheet structures, respectively. (b1’) and (b2’) are those of the
truncated double Fourier series of AMBER parm96 force fields that were modified to enhance α-helix structures
and β-sheet structures, respectively. The conformations are ordered in the increasing order of energy for each
case. The figures were created with Molscript33 and Raster3D.34
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Fig. 5. Five lowest-energy final conformations of G-peptide obtained from six sets of 60 simulated annealing MD
runs. (a) and (b) are the results of the original AMBER parm94 and the original AMBER parm96 force fields,
respectively. (a1’) and (a2’) are those of the truncated double Fourier series of AMBER parm94 force fields that
were modified to enhance α-helix structures and β-sheet structures, respectively. (b1’) and (b2’) are those of the
truncated double Fourier series of AMBER parm96 force fields that were modified to enhance α-helix structures
and β-sheet structures, respectively. The conformations are ordered in the increasing order of energy for each
case. The figures were created with Molscript33 and Raster3D.34


