490 research outputs found

    Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53(Al) core-shell spheres

    Get PDF
    Ordered mesoporous silica-NH2-MIL-53(Al) core-shell spheres of about 4 µm in diameter have been synthesized by seeding the corresponding mesoporous silica spheres (MSSs) with crystals of NH2-MIL-53(Al) and subsequent secondary crystal growth into a MOF shell. The morphology of the particles was analyzed by SEM, while TGA, EDX and XRD characterizations gave information on the composition and structure of this material and the activation of the MOF. N2 adsorption analysis revealed that the NH2-MIL-53(Al) shell controlled the access of guest molecules into the hydrophilic silica mesoporous structure, while the breathing behavior of the microporous NH2-MIL-53(Al) shell was confirmed by CO2 adsorption isotherms

    Heterogeneously Catalyzed Continuous-Flow Hydrogenation Using Segmented Flow in Capillary Columns

    Get PDF
    Segmented flow in standard GC capillary columns, with a heterogeneous Pd catalyst on the walls, gave rapid information about catalytic processes in them. The residence time and conversion was monitored visually, greatly simplifying bench-scale optimization. Examples show the benefits of the elimination of pore diffusion and axial dispersion. Further, we demonstrated how to quickly identify deactivating species in multistep synthesis without intermediate workup

    Intensifying the Fischer-Tropsch Synthesis by Reactor Structuring—A

    Get PDF
    Abstract This paper investigates the intensification of Fischer-Tropsch Synthesis in two types of threephase catalytic reactors: slurry bubble columns and multi-tubular fixed beds. A simple mathematical model is used to analyse the effect of structuring on the C 5+ productivity of these two types of reactors. The results of the model show that decreasing the backmixing with a factor 4 and increasing the gas residence time in a slurry bubble column considerably enhances the production of C 5+ . On the other hand in a fixed bed reactor a similar improvement is obtained when the heat transfer coefficient is improved with a factor 2.5 and the diffusion length in catalyst particles is decreased with a factor 2. Both reactors show a potential improvement in productivity per reactor volume; 20% in the slurry bubble column and 40% in the fixed bed reactor

    Overcoming the engineering constraints for scaling-up the state-of-the-art catalyst for tail-gas N2O decomposition

    Get PDF
    An efficient process is reported for preparing a state-of-the-art Fe-ferrierite catalyst for N2O decomposition under industrial tail-gas conditions. In the synthesis procedure we evaluate the very demanding constraints for scale-up; i.e. large reactor volumes are typically needed, long processing times and considerable amounts of waste water is generated. The proposed synthesis minimizes the amount of water used, and therefore the amount produced waste water is minimal; in this approach there is no liquid residual water stream that would need intensive processing. This has remarkable benefits in terms of process design, since the volume of equipment is reduced and the energy-intensive filtration is eliminated. This route exemplifies the concept of process intensification, with the ambition to re-engineer an existing process to make the industrial catalyst manufacture more sustainable. The so-obtained catalyst is active, selective and very stable under tail gas conditions containing H2O, NO and O2, together with N2O; keeping a high conversion during 70 h time on stream at 700 K, with a decay of 0.01%/h, while the standard reference catalyst decays at 0.06%/h; hence it deactivates six times slower, with ~5% absolute points of higher conversion. The excellent catalytic performance is ascribed to the differential speciation

    Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes

    Get PDF
    PtII azido complexes [Pt(bpy)(N3)2] (1), [Pt(phen)(N3)2] (2) and trans-[Pt(N3)2(py)2] (3) incorporating the bidentate diimine ligands 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N3–Pt–N3 angle 146.7°) as a result of steric congestion at the Pt centre. The novel PtIV complexes trans, cis-[Pt(bpy)(OAc)2(N3)2] (4), trans, cis-[Pt(phen)(OAc)2(N3)2] (5), trans, trans, trans-[Pt(OAc)2(N3)2(py)2] (6), were obtained from 1–3via oxidation with H2O2 in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4–6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These PtIV complexes exhibit greater absorption at longer wavelengths (ε = 9756 M−1 cm−1 at 315 nm for 4; ε = 796 M−1 cm−1 at 352 nm for 5; ε = 16900 M−1 cm−1 at 307 nm for 6, in aqueous solution) than previously reported PtIV azide complexes, due to the presence of aromatic amines, and 4–6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4–6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1–3 were also simulated by computational methods and comparison between PtII and PtIV electronic and structural properties allowed further elucidation of the photochemistry of 4–6

    Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process

    Get PDF
    The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure-performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite 'ZSM-5' for the production of propylene. Our results demonstrate that the isolation of Bronsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime
    corecore