82 research outputs found

    Mapping the sex determination locus in the hāpuku (Polyprion oxygeneios) using ddRAD sequencing

    Get PDF
    Background  Hāpuku (Polyprion oxygeneios) is a member of the wreckfish family (Polyprionidae) and is highly regarded as a food fish. Although adults grow relatively slowly, juveniles exhibit low feed conversion ratios and can reach market size in 1–2 years, makingP. oxygeneiosa strong candidate for aquaculture. However, they can take over 5years to reach sexual maturity in captivity and are not externally sexually dimorphic, complicating many aspects of broodstock management. Understanding the sex determination system ofP. oxygeneiosand developing accurate assays to assign genetic sex will contribute significantly towards its full-scale commercialisation.  Results  DNA from parents and sexed offspring (n = 57) from a single family of captive bredP. oxygeneioswas used as a template for double digestion Restriction-site Associated DNA (ddRAD) sequencing. Two libraries were constructed usingSbfI–SphI andSbfI –NcoI restriction enzyme combinations, respectively. Two runs on an Illumina MiSeq platform generated 70,266,464 raw reads, identifying 19,669 RAD loci. A combined sex linkage map (1367cM) was constructed based on 1575 Single Nucleotide Polymorphism (SNP) markers that resolved into 35 linkage groups. Sex-specific linkage maps were of similar size (1132 and 1168cM for male and female maps respectively). A single major sex-determining locus, found to be heterogametic in males, was mapped to linkage group 14. Several markers were found to be in strong linkage disequilibrium with the sex-determining locus. Allele-specific PCR assays were developed for two of these markers, SphI6331 and SphI8298, and demonstrated to accurately differentiate sex in progeny within the same pedigree. Comparative genomic analyses indicated that many of the linkage groups within theP. oxygeneiosmap share a relatively high degree of homology with those published for the European seabass (Dicentrarchus labrax).  Conclusion  P. oxygeneioshas an XX/XY sex determination system. Evaluation of allele-specific PCR assays, based on the two SNP markers most closely associated with phenotypic sex, indicates that a simple molecular assay for sexingP. oxygeneiosshould be readily attainable. The high degree of synteny observed withD. labraxshould aid further molecular genetic study and exploitation of hāpuku as a food fish

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch.

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A

    Mapping and validation of a major QTL affecting resistance to pancreas disease (salmonid alphavirus) in Atlantic salmon (Salmo salar)

    Get PDF
    Pancreas disease (PD), caused by a salmonid alphavirus (SAV), has a large negative economic and animal welfare impact on Atlantic salmon aquaculture. Evidence for genetic variation in host resistance to this disease has been reported, suggesting that selective breeding may potentially form an important component of disease control. The aim of this study was to explore the genetic architecture of resistance to PD, using survival data collected from two unrelated populations of Atlantic salmon; one challenged with SAV as fry in freshwater (POP 1) and one challenged with SAV as post-smolts in sea water (POP 2). Analyses of the binary survival data revealed a moderate-to-high heritability for host resistance to PD in both populations (fry POP 1 h(2)~0.5; post-smolt POP 2 h(2)~0.4). Subsets of both populations were genotyped for single nucleotide polymorphism markers, and six putative resistance quantitative trait loci (QTL) were identified. One of these QTL was mapped to the same location on chromosome 3 in both populations, reaching chromosome-wide significance in both the sire- and dam-based analyses in POP 1, and genome-wide significance in a combined analysis in POP 2. This independently verified QTL explains a significant proportion of host genetic variation in resistance to PD in both populations, suggesting a common underlying mechanism for genetic resistance across lifecycle stages. Markers associated with this QTL are being incorporated into selective breeding programs to improve PD resistance

    Exercise and diabetes: relevance and causes for response variability

    Get PDF

    A major locus controls a biologically active pheromone component in Heliconius melpomene

    No full text
    Understanding the production, response, and genetics of signals used in mate choice can inform our understanding of the evolution of both intraspecific mate choice and reproductive isolation. Sex pheromones are important for courtship and mate choice in many insects, but we know relatively little of their role in butterflies. The butterfly Heliconius melpomene uses a complex blend of wing androconial compounds during courtship. Electroantennography in H. melpomene and its close relative Heliconius cydno showed that responses to androconial extracts were not species specific. Females of both species responded equally strongly to extracts of both species, suggesting conservation of peripheral nervous system elements across the two species. Individual blend components provoked little to no response, with the exception of octadecanal, a major component of the H. melpomene blend. Supplementing octadecanal on the wings of octadecanal-rich H. melpomene males led to an increase in the time until mating, demonstrating the bioactivity of octadecanal in Heliconius. Using quantitative trait locus (QTL) mapping, we identified a single locus on chromosome 20 responsible for 41% of the parental species' difference in octadecanal production. This QTL does not overlap with any of the major wing color or mate choice loci, nor does it overlap with known regions of elevated or reduced FST . A set of 16 candidate fatty acid biosynthesis genes lies underneath the QTL. Pheromones in Heliconius carry information relevant for mate choice and are under simple genetic control, suggesting they could be important during speciation
    corecore