523 research outputs found

    Spin communication over 30 μ\mum long channels of chemical vapor deposited graphene on SiO2_2

    Get PDF
    We demonstrate a high-yield fabrication of non-local spin valve devices with room-temperature spin lifetimes of up to 3 ns and spin relaxation lengths as long as 9 μ\mum in platinum-based chemical vapor deposition (Pt-CVD) synthesized single-layer graphene on SiO2_2/Si substrates. The spin-lifetime systematically presents a marked minimum at the charge neutrality point, as typically observed in pristine exfoliated graphene. However, by studying the carrier density dependence beyond n ~ 5 x 1012^{12} cm−2^{-2}, via electrostatic gating, it is found that the spin lifetime reaches a maximum and then starts decreasing, a behavior that is reminiscent of that predicted when the spin-relaxation is driven by spin-orbit interaction. The spin lifetimes and relaxation lengths compare well with state-of-the-art results using exfoliated graphene on SiO2_2/Si, being a factor two-to-three larger than the best values reported at room temperature using the same substrate. As a result, the spin signal can be readily measured across 30 μ\mum long graphene channels. These observations indicate that Pt-CVD graphene is a promising material for large-scale spin-based logic-in-memory applications

    Reconstructing diploid 3D chromatin structures from single cell Hi-C data with a polymer-based approach

    Get PDF
    Detailed understanding of the 3D structure of chromatin is a key ingredient to investigate a variety of processes inside the cell. Since direct methods to experimentally ascertain these structures lack the desired spatial fidelity, computational inference methods based on single cell Hi-C data have gained significant interest. Here, we develop a progressive simulation protocol to iteratively improve the resolution of predicted interphase structures by maximum-likelihood association of ambiguous Hi-C contacts using lower-resolution predictions. Compared to state-of-the-art methods, our procedure is not limited to haploid cell data and allows us to reach a resolution of up to 5,000 base pairs per bead. High resolution chromatin models grant access to a multitude of structural phenomena. Exemplarily, we verify the formation of chromosome territories and holes near aggregated chromocenters as well as the inversion of the CpG content for rod photoreceptor cells

    The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates Under Conservative Assumptions

    Get PDF
    We present the results of the largest L′L^{\prime} (3.8 μ3.8~\mum) direct imaging survey for exoplanets to date, the Large Binocular Telescope Interferometer (LBTI) Exozodi Exoplanet Common Hunt (LEECH). We observed 98 stars with spectral types from B to M. Cool planets emit a larger share of their flux in L′L^{\prime} compared to shorter wavelengths, affording LEECH an advantage in detecting low-mass, old, and cold-start giant planets. We emphasize proximity over youth in our target selection, probing physical separations smaller than other direct imaging surveys. For FGK stars, LEECH outperforms many previous studies, placing tighter constraints on the hot-start planet occurrence frequency interior to ∼20\sim20 au. For less luminous, cold-start planets, LEECH provides the best constraints on giant-planet frequency interior to ∼20\sim20 au around FGK stars. Direct imaging survey results depend sensitively on both the choice of evolutionary model (e.g., hot- or cold-start) and assumptions (explicit or implicit) about the shape of the underlying planet distribution, in particular its radial extent. Artificially low limits on the planet occurrence frequency can be derived when the shape of the planet distribution is assumed to extend to very large separations, well beyond typical protoplanetary dust-disk radii (≲50\lesssim50 au), and when hot-start models are used exclusively. We place a conservative upper limit on the planet occurrence frequency using cold-start models and planetary population distributions that do not extend beyond typical protoplanetary dust-disk radii. We find that ≲90%\lesssim90\% of FGK systems can host a 7 to 10 MJupM_{\mathrm{Jup}} planet from 5 to 50 au. This limit leaves open the possibility that planets in this range are common.Comment: 31 pages, 13 figures, accepted to A

    Competition between decay and dissociation of core-excited OCS studied by X-ray scattering

    Full text link
    We show the first evidence of dissociation during resonant inelastic soft X-ray scattering. Carbon and oxygen K-shell and sulfur L-shell resonant and non-resonant X-ray emission spectra were measured using monochromatic synchrotron radiation for excitation and ionization. After sulfur, L2,3 -> {\pi}*, {\sigma}* excitation, atomic lines are observed in the emission spectra as a consequence of competition between de-excitation and dissociation. In contrast the carbon and oxygen spectra show weaker line shape variations and no atomic lines. The spectra are compared to results from ab initio calculations and the discussion of the dissociation paths is based on calculated potential energy surfaces and atomic transition energies.Comment: 12 pages, 6 pictures, 2 tables, http://link.aps.org/doi/10.1103/PhysRevA.59.428

    The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A

    Get PDF
    Cytochrome c 6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c 6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c 6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c 6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c 6A and c 6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c 6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role. © 2011 Elsevier B.V. All rights reserved

    ISPY – NaCo imaging survey for planets around young stars : a young companion candidate embedded in the R CrA cloud

    Get PDF
    Context Within the NaCo-ISPY exoplanet imaging program, we aim at detecting and characterizing the population of low-mass companions at wide separations (≳10 AU), focusing in particular on young stars either hosting a known protoplanetary disk or a debris disk. Aims R CrA is one of the youngest (1-3 Myr) and most promising objects in our sample because of two previous studies that suggested the presence of a close companion. Our aim is to directly image and characterize the companion for the first time. Methods We observed R CrA twice with the NaCo instrument at the Very Large Telescope (VLT) in the L' filter with a one year time baseline in between. The high-contrast imaging data were reduced and analyzed and the companion candidate was detected in both datasets. We used artificial negative signals to determine the position and brightness of the companion and the related uncertainties. Results The companion is detected at a separation of 196.8 ± 4.5/196.6 ± 5.9 mas (18.7 ± 1.3/18.7 ± 1.4 AU) and position angle of 134.7 ± 0.5 ° /133.7 ± 0.7° in the first/second epoch observation. We measure a contrast of 7.29 ± 0.18/6.70 ± 0.15 mag with respect to the primary. A study of the stellar proper motion rejects the hypothesis that the signal is a background object. The companion candidate orbits in the clockwise direction and, if on a face-on circular orbit, its period is ˜43 - 47 yr. This value disagrees with the estimated orbital motion and therefore a face-on circular orbit may be excluded. Depending on the assumed age, extinction, and brightness of the primary, the stellar companion has a mass between 0.10 ± 0.02 M⊙ and 1.03-0.18+0.20 M⊙ range, if no contribution from circumsecondary material is taken into account. Conclusions As already hypothesized by previous studies, we directly detected a low-mass stellar companion orbiting the young Herbig Ae/Be star R CrA. Depending on the age assumptions, the companion is among the youngest forming companions imaged to date, and its presence needs to be taken into account when analyzing the complex circumstellar environment of R CrA
    • …
    corecore