75 research outputs found

    Grain Characteristics, Chemical Composition, and Functional Properties of Rye (Secale cereale L.) As Influenced by Genotype and Harvest Year

    Get PDF
    Grain characteristic, chemical composition, and functional properties of rye were measured in 19 different cultivars grown in one location in up to 3 years. The cultivars included 8 adapted hybrids, 7 adapted population cultivars, and 4 nonadapted population cultivars. The results showed a significant influence of both harvest year and genotype on grain characteristics, chemical composition, and functional properties of the grain. Multivariate data analysis confirmed that the variations in the data were explained by yearly and genotype differences. Calculations of variance components showed that the variations in plant height, harvest yield, and protein content were mainly due to genotype differences and to a lesser extent to differences among harvest years. The kernel weight, hardness index, and content of dietary fiber components, however, were more strongly influenced by the harvest year than by the genotype. Differences in starch properties measured by falling number (FN), amylograph peak viscosity, and temperature at peak viscosity were more strongly influenced by harvest year. The water absorption was strongly influenced by genotype effects, compared to yearly differences. FN and amylograph peak temperature were positively correlated (r = 0.94). No correlation was found between the water absorption and the relative proportion of water-extractable arabinoxylan (AX) compared to the total AX content. However, the degree of ferulic acid cross-linking showed a negative correlation (r = -0.70) with the water absorption

    Role of Caspases and Gasdermin A during HSV-1 Infection in Mice

    Get PDF
    Herpes simplex virus type 1 (HSV-1) infection can manifest locally as mucocutaneous lesions or keratitis and can also spread to the central nervous system to cause encephalitis. HSV-1 establishes a lifelong latent infection and neither cure nor vaccine is currently available. The innate immune response is the first line of defense against infection. Caspases and gasdermins are important components of innate immunity. Caspases are a family of cysteine proteases, most of which mediate regulated cell death. Gasdermins are a family of pore-forming proteins that trigger lytic cell death. To determine whether caspases or gasdermins contribute to innate immune defenses against HSV-1, we screened mice deficient in specific cell death genes. Our results indicate a modest role for caspase-6 in defense against HSV-1. Further, Asc–/–Casp1/11–/– mice also had a modest increased susceptibility to HSV-1 infection. Caspase-7, -8, and -14 did not have a notable role in controlling HSV-1 infection. We generated Gsdma1-Gsdma2-Gsdma3 triple knockout mice, which also had normal susceptibility to HSV-1. We confirmed that the previously published importance of RIPK3 during systemic HSV-1 infection also holds true during skin infection. Overall, our data highlight that as a successful pathogen, HSV-1 has multiple ways to evade host innate immune responses

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Get PDF
    K2's Campaign 9 (K2C9) will conduct a ~3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax πE{\pi }_{{\rm{E}}} for 170\gtrsim 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST

    Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review

    Full text link

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p
    corecore