41 research outputs found

    Rescheduling rehabilitation sessions with answer set programming

    Get PDF
    The rehabilitation scheduling process consists of planning rehabilitation physiotherapy sessions for patients, by assigning proper operators to them in a certain time slot of a given day, taking into account several requirements and optimizations, e.g. patient’s preferences and operator’s work balancing. Being able to efficiently solve such problem is of upmost importance, in particular as a consequence of the COVID-19 pandemic that significantly increased rehabilitation’s needs. The problem has been recently successfully solved via a two-phase solution based on answer set programming (ASP). In this paper, we focus on the problem of rescheduling the rehabilitation sessions, which comes into play when the original schedule cannot be implemented, for reasons that involve the unavailability of operators and/or the absence of patients. We provide rescheduling solutions based on ASP for both phases, considering different scenarios. Results of experiments performed on real benchmarks, provided by ICS Maugeri, show that also the rescheduling problem can be solved in a satisfactory way. Finally, we present a web application that supports the usage of our solution

    Survival Online: a web-based service for the analysis of correlations between gene expression and clinical and follow-up data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complex microarray gene expression datasets can be used for many independent analyses and are particularly interesting for the validation of potential biomarkers and multi-gene classifiers. This article presents a novel method to perform correlations between microarray gene expression data and clinico-pathological data through a combination of available and newly developed processing tools.</p> <p>Results</p> <p>We developed Survival Online (available at <url>http://ada.dist.unige.it:8080/enginframe/bioinf/bioinf.xml</url>), a Web-based system that allows for the analysis of Affymetrix GeneChip microarrays by using a parallel version of dChip. The user is first enabled to select pre-loaded datasets or single samples thereof, as well as single genes or lists of genes. Expression values of selected genes are then correlated with sample annotation data by uni- or multi-variate Cox regression and survival analyses. The system was tested using publicly available breast cancer datasets and GO (Gene Ontology) derived gene lists or single genes for survival analyses.</p> <p>Conclusion</p> <p>The system can be used by bio-medical researchers without specific computation skills to validate potential biomarkers or multi-gene classifiers. The design of the service, the parallelization of pre-processing tasks and the implementation on an HPC (High Performance Computing) environment make this system a useful tool for validation on several independent datasets.</p

    Solving rehabilitation scheduling problems via a two-phase ASP approach

    Get PDF
    A core part of the rehabilitation scheduling process consists of planning rehabilitation physiotherapy sessions for patients, by assigning proper operators to them in a certain time slot of a given day, taking into account several legal, medical and ethical requirements and optimizations, e.g., patient’s preferences and operator’s work balancing. Being able to efficiently solve such problem is of upmost importance, in particular after the COVID-19 pandemic that significantly increased rehabilitation’s needs. In this paper, we present a two-phase solution to rehabilitation scheduling based on Answer Set Programming, which proved to be an effective tool for solving practical scheduling problems. We first present a general encoding, and then add domain specific optimizations. Results of experiments performed on both synthetic and real benchmarks, the latter provided by ICS Maugeri, show the effectiveness of our solution as well as the impact of our domain specific optimization

    A Grid-based solution for management and analysis of microarrays in distributed experiments

    Get PDF
    Several systems have been presented in the last years in order to manage the complexity of large microarray experiments. Although good results have been achieved, most systems tend to lack in one or more fields. A Grid based approach may provide a shared, standardized and reliable solution for storage and analysis of biological data, in order to maximize the results of experimental efforts. A Grid framework has been therefore adopted due to the necessity of remotely accessing large amounts of distributed data as well as to scale computational performances for terabyte datasets. Two different biological studies have been planned in order to highlight the benefits that can emerge from our Grid based platform. The described environment relies on storage services and computational services provided by the gLite Grid middleware. The Grid environment is also able to exploit the added value of metadata in order to let users better classify and search experiments. A state-of-art Grid portal has been implemented in order to hide the complexity of framework from end users and to make them able to easily access available services and data. The functional architecture of the portal is described. As a first test of the system performances, a gene expression analysis has been performed on a dataset of Affymetrix GeneChip® Rat Expression Array RAE230A, from the ArrayExpress database. The sequence of analysis includes three steps: (i) group opening and image set uploading, (ii) normalization, and (iii) model based gene expression (based on PM/MM difference model). Two different Linux versions (sequential and parallel) of the dChip software have been developed to implement the analysis and have been tested on a cluster. From results, it emerges that the parallelization of the analysis process and the execution of parallel jobs on distributed computational resources actually improve the performances. Moreover, the Grid environment have been tested both against the possibility of uploading and accessing distributed datasets through the Grid middleware and against its ability in managing the execution of jobs on distributed computational resources. Results from the Grid test will be discussed in a further paper

    A Web-based and Grid-enabled dChip version for the analysis of large sets of gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray techniques are one of the main methods used to investigate thousands of gene expression profiles for enlightening complex biological processes responsible for serious diseases, with a great scientific impact and a wide application area. Several standalone applications had been developed in order to analyze microarray data. Two of the most known free analysis software packages are the R-based Bioconductor and dChip. The part of dChip software concerning the calculation and the analysis of gene expression has been modified to permit its execution on both cluster environments (supercomputers) and Grid infrastructures (distributed computing).</p> <p>This work is not aimed at replacing existing tools, but it provides researchers with a method to analyze large datasets without any hardware or software constraints.</p> <p>Results</p> <p>An application able to perform the computation and the analysis of gene expression on large datasets has been developed using algorithms provided by dChip. Different tests have been carried out in order to validate the results and to compare the performances obtained on different infrastructures. Validation tests have been performed using a small dataset related to the comparison of HUVEC (Human Umbilical Vein Endothelial Cells) and Fibroblasts, derived from same donors, treated with IFN-α.</p> <p>Moreover performance tests have been executed just to compare performances on different environments using a large dataset including about 1000 samples related to Breast Cancer patients.</p> <p>Conclusion</p> <p>A Grid-enabled software application for the analysis of large Microarray datasets has been proposed. DChip software has been ported on Linux platform and modified, using appropriate parallelization strategies, to permit its execution on both cluster environments and Grid infrastructures. The added value provided by the use of Grid technologies is the possibility to exploit both computational and data Grid infrastructures to analyze large datasets of distributed data. The software has been validated and performances on cluster and Grid environments have been compared obtaining quite good scalability results.</p

    SYMBIOmatics: Synergies in Medical Informatics and Bioinformatics – exploring current scientific literature for emerging topics

    Get PDF
    Background: The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to http://www.symbiomatics.org). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. Results: This paper presents results ofa systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000-2005 ("recent") and 1990-1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. Conclusion: We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science

    A model to prioritize access to elective surgery on the basis of clinical urgency and waiting time

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prioritization of waiting lists for elective surgery represents a major issue in public systems in view of the fact that patients often suffer from consequences of long waiting times. In addition, administrative and standardized data on waiting lists are generally lacking in Italy, where no detailed national reports are available. This is true although since 2002 the National Government has defined implicit Urgency-Related Groups (URGs) associated with Maximum Time Before Treatment (MTBT), similar to the Australian classification. The aim of this paper is to propose a model to manage waiting lists and prioritize admissions to elective surgery.</p> <p>Methods</p> <p>In 2001, the Italian Ministry of Health funded the Surgical Waiting List Info System (SWALIS) project, with the aim of experimenting solutions for managing elective surgery waiting lists. The project was split into two phases. In the first project phase, ten surgical units in the largest hospital of the Liguria Region were involved in the design of a pre-admission process model. The model was embedded in a Web based software, adopting Italian URGs with minor modifications. The SWALIS pre-admission process was based on the following steps: 1) urgency assessment into URGs; 2) correspondent assignment of a pre-set MTBT; 3) real time prioritization of every referral on the list, according to urgency and waiting time. In the second project phase a prospective descriptive study was performed, when a single general surgery unit was selected as the deployment and test bed, managing all registrations from March 2004 to March 2007 (1809 ordinary and 597 day cases). From August 2005, once the SWALIS model had been modified, waiting lists were monitored and analyzed, measuring the impact of the model by a set of performance indexes (average waiting time, length of the waiting list) and Appropriate Performance Index (API).</p> <p>Results</p> <p>The SWALIS pre-admission model was used for all registrations in the test period, fully covering the case mix of the patients referred to surgery. The software produced real time data and advanced parameters, providing patients and users useful tools to manage waiting lists and to schedule hospital admissions with ease and efficiency. The model protected patients from horizontal and vertical inequities, while positive changes in API were observed in the latest period, meaning that more patients were treated within their MTBT.</p> <p>Conclusion</p> <p>The SWALIS model achieves the purpose of providing useful data to monitor waiting lists appropriately. It allows homogeneous and standardized prioritization, enhancing transparency, efficiency and equity. Due to its applicability, it might represent a pragmatic approach towards surgical waiting lists, useful in both clinical practice and strategic resource management.</p

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore