40 research outputs found

    Primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphomas: reappraisal of a provisional entity in the 2016 WHO classification of cutaneous lymphomas.

    Get PDF
    Primary cutaneous CD8-positive aggressive epidermotropic T-cell lymphoma is a rare and poorly characterized variant of cutaneous lymphoma still considered a provisional entity in the latest 2016 World Health Organization Classification of Cutaneous lymphomas. We sought to better characterize and provide diagnostic and therapeutic guidance of this rare cutaneous lymphoma. Thirty-four patients with a median age of 77 years (range 19-89 years) presented primarily with extensive annular necrotic plaques or tumor lesions with frequent mucous membrane involvement. The 5-year survival was 32% with a median survival of 12 months. A subset of 17 patients had a prodrome of chronic patches prior to the development of aggressive ulcerative lesions. We identified cases with lack of CD8 or αβ T-cell receptor expression yet with similar clinical and pathological presentation. Allogeneic stem cell transplantation provided partial or complete remissions in 5/6 patients. We recommend the term primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphoma as this more broad designation better describes this clinical-pathologic presentation, which allows the inclusion of cases with CD8 negative and/or αβ/γδ T-cell receptor chain double-positive or double-negative expression. We have identified early skin signs of chronic patch/plaque lesions that are often misdiagnosed as eczema, psoriasis, or mycosis fungoides. Our experience confirms the poor prognosis of this entity and highlights the inefficacy of our standard therapies with the exception of allogeneic stem cell transplantation in selected cases

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 μg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe

    Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017

    Get PDF
    For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30 ground-based lidars. The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern Scandinavia over whole western and central Europe to the Mediterranean regions. Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017. Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017 during the peak of this event. The stratospheric smoke layers reached extinction coefficient values of more than 600 Mm−1 at 532 nm, a factor of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements. Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between 70-90 sr were measured at higher wavelengths. In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean (Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed until the end of August within Europe. An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development of these layers as well as their geometrical and optical properties will be presented

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Role of Radiotherapy in Aggressive Digital Papillary Adenocarcinoma.

    No full text
    Aggressive digital papillary adenocarcinoma (ADPA) is a rare and often misdiagnosed malignant tumor of the sweat glands, most commonly encountered on the extremities. Due to the relatively high metastatic potential of the tumor, aggressive surgical treatment, including amputation, is generally recommended. We present a case of a 36-year-old male with an over 10-year history of a skin lesion on the right hand in the web space between the index and the middle finger. Histologically, the lesion revealed a malignant epithelioid neoplasm with features consistent with ADPA. The lesion was treated with 5-weeks preoperative radiation (total 5000 cGy) followed by surgical resection. There was no evidence of residual disease confirmed by pathological study of re-excision specimen as well as imaging studies. This is, to the best of knowledge, the first report of complete regression of an ADPA after radiotherapy

    Impact of the 2009 (7th Edition) AJCC Melanoma Staging System in the Classification of Thin Cutaneous Melanomas

    Get PDF
    Context. The 7th (2009) edition of the AJCC melanoma staging system incorporates tumor (Breslow) thickness, MR, and ulceration in stratifying T1 primary melanomas. Compared to the prior 6th (2001) edition, MR has replaced CL for thin melanomas. Objective. We sought to identify and report differences of the classification of thin melanomas as well as outcome of SLNB in patients according to the 6th and 7th editions at our institution. Results. 106 patients were identified with thin melanomas verified by wide excision. 31 of 106 thin melanomas were reclassified according to the 7th edition of the AJCC. Of those 31, 15 CL II/III patients (6th edition T1a) were reclassified as T1b based on the presence of mitoses while 16 CL IV patients (6th edition T1b) were categorized as T1a based on the absence of mitoses. 26/31 reclassified patients underwent SLNB, and all were negative. Patients with thin melanoma and a +SLNB (N = 3) were all classified as T1b according to both staging systems. Conclusions. In our experience, 29% of thin melanomas were reclassified according to the 7th edition with similar proportions of patients re-distributed as T1a (14%) and T1b (15%). Cases with +SLN corresponded with T1b lesions in both 6th and 7th editions

    Biomass Burning Measurements in Earlinet

    No full text
    The biomass burning events are analyzed using the EARLINET-ACTRIS atmospheric profiling of aerosols using lidars. The period of 2008-2017 was chosen to analyze all the events assigned in the EARLINET database under Forest Fire category. A number of fourteen stations were considered. The data provided, ranged from complete data sets (backscatter, extinction and particle linear depolarization ratio) to single profiles (backscatter coefficient). A thorough quality control was performed. Smoke layers geometry was evaluated and the mean properties within each layer were computed. The Hysplit backward-trajectory technique and the FIRMS fire database were used to double check the source of each layer. Discussions were made under the following scenarios: fire events seen by two stations, long range transport from North America, and geographical clusters

    Biomass Burning Measurements in Earlinet

    Get PDF
    The biomass burning events are analyzed using the EARLINET-ACTRIS atmospheric profiling of aerosols using lidars. The period of 2008-2017 was chosen to analyze all the events assigned in the EARLINET database under Forest Fire category. A number of fourteen stations were considered. The data provided, ranged from complete data sets (backscatter, extinction and particle linear depolarization ratio) to single profiles (backscatter coefficient). A thorough quality control was performed. Smoke layers geometry was evaluated and the mean properties within each layer were computed. The Hysplit backward-trajectory technique and the FIRMS fire database were used to double check the source of each layer. Discussions were made under the following scenarios: fire events seen by two stations, long range transport from North America, and geographical clusters
    corecore