20 research outputs found

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    New catalysts for branched selective hydroformylation of alkenes

    No full text
    Both products, n-butyraldehyde and iso-butyraldehyde from propene hydroformylation are key building blocks for the synthesis of many chemical intermediates, and although high linear selectivity has been achieved, any form of branched selectivity remains very difficult to attain. This project aims to deliver a catalyst that can selectively produce branched iso-butyraldehyde as the major product from propene hydroformylation. One approach discussed is to study terphenyl phosphines as ligands. The synthesis of substituted terphenyls through Suzuki-Miyaura coupling reactions between aryl boronic acids and 2,6-dichloroanisole was studied. Novel phosphine-phosphanamine ligands with bulky terphenyl substituents were synthesised and tested in propene hydroformylation, and also asymmetric hydroformylation of other alkenes. The synthesis of several ferrocene-based phosphine-phosphoramidite ligands is also discussed. These ligands were then tested in rhodium-catalysed propene hydroformylation and their reactivities and selectivities are reported. These ligands/Rh catalysts showed a moderate reactivity for propene hydroformylation and up to 56% branched selectivity, which is close to the best selectivity known under industrially relevant conditions. The introduction of bulky substituents on the phosphoramidite part of the ligand did not deliver any huge increases in regioselectivity, but a large improvement in catalyst thermal stability was observed in experiments conducted using in situ high pressure infrared spectroscopy. The reaction conditions for rhodium-catalysed propene hydroformylation using the BOBPHOS ligand were investigated, with unprecedented branched selectivity of up to 82% achieved. A variety of aspects was examined, including the solvent, reaction temperature, reaction pressure with varying partial pressure of CO and H₂, and rhodium to ligand ratio. BOBPHOS derivatives which are more synthetically accessible and economically attractive were synthesised and tested in rhodium-catalysed propene hydroformylation. Comparable results with their parent ligand/Rh catalyst were obtained and improved thermal stabilities were observed in selected catalysts. Different directions for potential future works are suggested, which hopefully, along with the findings in this thesis, can be a major contribution to the development of an efficient, branched selective catalytic system for industrial propene hydroformylation

    New Catalysts for branched selective hydroformylation of alkenes (thesis data)

    No full text
    NMR. HPIR, IR spectra. The data files are embargoed until 06/12/2025

    High<i> iso</i> aldehyde selectivity in the hydroformylation of short-chain alkenes

    No full text
    The hydroformylation of propene to give predominantly iso‐butanal has been achieved; class‐leading selectivity is possible even at higher temperatures that deliver fast conversion. Racemic rhodium complexes of bidentate phospholane phosphites derived from tropos‐biphenols and unusual solvent systems are the key to the selectivity observed

    Sirih alat menyatakan perasaan yang simbolik

    No full text
    Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds
    corecore