19 research outputs found

    Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    Get PDF
    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage

    Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri

    Get PDF
    Background The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. Results Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. Conclusions In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.publishedVersio

    Endosomal vesicle fusion machinery is involved with the contractile vacuole in <i>Dictyostelium discoideum</i>

    Full text link
    ABSTRACT Contractile vacuoles (CVs), enigmatic osmoregulatory organelles, share common characteristics, such as a requirement for RAB11 and high levels of V-ATPase. These commonalities suggest a conserved evolutionary origin for the CVs with implications for understanding of the last common ancestor of eukaryotes and eukaryotic diversification more broadly. A taxonomically broader sampling of CV-associated machinery is required to address this question further. We used a transcriptomics-based approach to identify CV-associated gene products in Dictyostelium discoideum. This approach was first validated by assessing a set of known CV-associated gene products, which were significantly upregulated following hypo-osmotic exposure. Moreover, endosomal and vacuolar gene products were enriched in the upregulated gene set. An upregulated SNARE protein (NPSNB) was predominantly plasma membrane localised and enriched in the vicinity of CVs, supporting the association with this organelle found in the transcriptomic analysis. We therefore confirm that transcriptomic approaches can identify known and novel players in CV function, in our case emphasizing the role of endosomal vesicle fusion machinery in the D. discoideum CV and facilitating future work to address questions regarding the deep evolution of eukaryotic organelles.</jats:p

    Gut Microbiota and the Quality of Oral Anticoagulation in Vitamin K Antagonists Users: A Review of Potential Implications

    Get PDF
    The efficacy and safety of vitamin K antagonists (VKAs) as oral anticoagulants (OACs) depend on the quality of anticoagulation control, as reflected by the mean time in therapeutic range (TTR). Several factors may be involved in poor TTR such as comorbidities, high inter-individual variability, interacting drugs, and non-adherence. Recent studies suggest that gut microbiota (GM) plays an important role in the pathogenesis of cardiovascular diseases, but the effect of the GM on anticoagulation control with VKAs is unknown. In the present review article, we propose different mechanisms by which the GM could have an impact on the quality of anticoagulation control in patients taking VKA therapy. We suggest that the potential effects of GM may be mediated first, by an indirect effect of metabolites produced by GM in the availability of VKAs drugs; second, by an effect of vitamin K-producing bacteria; and finally, by the structural modification of the molecules of VKAs. Future research will help confirm these hypotheses and may suggest profiles of bacterial signatures or microbial metabolites, to be used as biomarkers to predict the quality of anticoagulation. This could lead to the design of intervention strategies modulating gut microbiota, for example, by using probiotics

    Treatment strategies for patients with atrial fibrillation and anticoagulant-associated intracranial hemorrhage: an overview of the pharmacotherapy

    No full text
    Introduction Oral anticoagulants (OAC) reduce stroke/systemic embolism and mortality risks in atrial fibrillation (AF). However, there is an inherent bleeding risk with OAC, where intracranial hemorrhage (ICH) is the most feared, disabling, and lethal complication of this therapy. Therefore, the optimal management of OAC-associated ICH is not well defined despite multiple suggested strategies. Areas covered In this review, the authors describe the severity and risk factors for OAC-associated ICH and the associated implications for using DOACs in AF patients. We also provide an overview of the management of OAC-associated ICH and treatment reversal strategies, including specific and nonspecific reversal agents as well as a comprehensive summary of the evidence about the resumption of DOAC and the optimal timing

    Gallic Acid: A Natural Phenolic Compound Exerting Antitumoral Activities in Colorectal Cancer via Interaction with G-Quadruplexes

    No full text
    Natural phenolic compounds have gained momentum for the prevention and treatment of cancer, but their antitumoral mechanism of action is not yet well understood. In the present study, we screened the antitumoral potential of several phenolic compounds in a cellular model of colorectal cancer (CRC). We selected gallic acid (GA) as a candidate in terms of potency and selectivity and extensively evaluated its biological activity. We report on the role of GA as a ligand of DNA G-quadruplexes (G4s), explaining several of its antitumoral effects, including the transcriptional inhibition of ribosomal and CMYC genes. In addition, GA shared with other established G4 ligands some effects such as cell cycle arrest, nucleolar stress, and induction of DNA damage. We further confirmed the antitumoral and G4-stabilizing properties of GA using a xenograft model of CRC. Finally, we succinctly demonstrate that GA could be explored as a therapeutic agent in a patient cohort with CRC. Our work reveals that GA, a natural bioactive compound present in the diet, affects gene expression by interaction with G4s both in vitro and in vivo and paves the way towards G4s targeting with phenolic compounds.</jats:p
    corecore