8 research outputs found

    Wildlife Trade in Southern Palawan, Philippines

    Get PDF
    Southern Palawan is one of the hottest hotspots for illegal trade of wildlife in the Philippines. Large numbers of wildlife are transported either by fishing vessels or private chartered planes from the south of Palawan to Zamboanga, Cebu, Manila, Batangas and even to Malaysia. Parrots and mynas are among the species of birds most traded due to their huge demand in the market. Other birds that are also under considerable pressure of poaching are Palawan hornbill and White-bellied sea eagle. Apart from birds, other Palawan wildlife included in the illegal shipments are Palawan pangolin, Balabac mouse deer, Palawan bearcat, Palawan bearded pig, Southern Palawan tree squirrel, freshwater turtles and beetles. The present study identified species of conservation priority involved in trade. The study also presents data on traded wildlife species in Palawan including their market value, modes of transport, operation of wildlife traders in Palawan and trade routes

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    Get PDF
    Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load. Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests. Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates

    Additional file 2: of Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    No full text
    Figure S1. Locations of the sampled population at Rasa I., Palawan, Philippines, in the Indo-Malayan zoogeographical region. Figure S2. Locations of the sampled populations in New Caledonia, Australasian zoogeographical region. Figure S3. Locations of the sampled population in the Chatham Is., Australasian zoogeographical region. Figure S4. Locations of the sampled populations in New Zealand, Australasian zoogeographical region. Figure S5. Locations of the sampled populations in the Neotropical zoogeographical region. (PDF 1271 kb

    Additional file 1: of Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    No full text
    Table S1. Hemoparasites in wild Psittaciformes. Malaria parasites (Plasmodium), related intracellular haemosporidians (Haemoproteus and Leucocytozoon), the unicellular parasitic flagellate protozoans (Trypanosoma), and microfilaria reported in wild populations of Psittaciformes. The probability of detection for adults is based on a simulation (see Additional file 4) of the probability that the parasites will actually be detected given the sample size and an expected true prevalence based on the prevalences observed in wild Psittaciformes. The habitat and climate classification follow the references in Table 1. (XLSX 34 kb

    Additional file 4: of Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    No full text
    Scripts and combined dataset to analyse the presence of hemoparasites in Psittaciformes. Analyses and the combined dataset for the effects of diet, habitat, climate, screening method (as factors) and species (as a random variable) on the presence of parasites in the studied individuals using a binomial General Lineal Mixed-Effects Model and model averaging based on Akaike information criterion (AIC) with R. Scripts for the 10-fold cross validation and the calculations of parasite detection probability are also provided. (TXT 34 kb

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    No full text
    corecore