205 research outputs found

    Polarization of synchrotron emission from relativistic reconfinement shocks with ordered magnetic fields

    Full text link
    We calculate the polarization of synchrotron radiation produced at the relativistic reconfinement shocks, taking into account globally ordered magnetic field components, in particular toroidal and helical fields. In these shocks, toroidal fields produce high parallel polarization (electric vectors parallel to the projected jet axis), while chaotic fields generate moderate perpendicular polarization. Helical fields result in a non-axisymmetric distribution of the total and polarized brightness. For a diverging downstream velocity field, the Stokes parameter U does not vanish and the average polarization is neither strictly parallel nor perpendicular. A distance at which the downstream flow is changing from diverging to converging can be easily identified on polarization maps as the turning point, at which polarization vectors switch, e.g., from clockwise to counterclockwise.Comment: 10 pages, 6 figures, accepted for publication in A&

    Early phase observations of extremely luminous Type Ia Supernova 2009dc

    Get PDF
    We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is Δm15(B)=0.65±0.03\Delta m_{15}(B)=0.65\pm 0.03, which is one of the slowest among SNe Ia. The peak VV-band absolute magnitude is MV=−19.90±0.15M_{V}=-19.90\pm 0.15 mag even if the host extinction is AV=0A_{V}=0 mag. It reaches MV=−20.19±0.19M_{V}=-20.19\pm 0.19 mag for the host extinction of AV=0.29A_{V}=0.29 mag as inferred from the observed Na {\sc i} D line absorption in the host. Our JHKsJHK_{s}-band photometry shows that the SN is one of the most luminous SNe Ia also in near-infrared wavelengths. These results indicate that SN 2009dc belongs to the most luminous class of SNe Ia, like SN 2003fg and SN 2006gz. We estimate the ejected 56^{56}Ni mass of 1.2±0.31.2\pm 0.3 \Msun for no host extinction case (or 1.6±\pm 0.4 M⊙_{\odot} for the host extinction of AV=0.29A_{V}=0.29 mag). The C {\sc ii} λ\lambda6580 absorption line keeps visible until a week after maximum, which diminished in SN 2006gz before its maximum brightness. The line velocity of Si {\sc ii} λ\lambda6355 is about 8000 km s−1^{-1} around the maximum, being considerably slower than that of SN 2006gz, while comparable to that of SN 2003fg. The velocity of the C {\sc ii} line is almost comparable to that of the Si {\sc ii}. The presence of the carbon line suggests that thick unburned C+O layers remain after the explosion. SN 2009dc is a plausible candidate of the super-Chandrasekhar mass SNe Ia

    The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    Get PDF
    In 2008 AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar GB6 J1239+0443 at z=1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor 15-30 in 6 years, and of ~10 in six months. We interpret this flare-up in terms of a transition from an accretion-disk dominated emission to a synchrotron-jet dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated the mass of the central black hole using the width of the CIV emission line. In our work, we have also investigated SDSS archival optical photometric data and UV GALEX observations to estimate the thermal-disk emission contribution of GB6 J1239+0443. Our analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically-relevant sign of absorption from the broad line region, suggesting that the blazar-zone is located beyond the broad line region. This result is confirmed by the modeling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disk luminosity and black hole mass estimated by us using archival data.Comment: 30 pages, 7 figures, 4 tables MNRAS Accepted on 2012 June 1

    GRB 091208B: First Detection of the Optical Polarization in Early Forward Shock Emission of a Gamma-Ray Burst Afterglow

    Full text link
    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149 - 706 s after the burst trigger, and the polarization degree is P = 10.4% +/- 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 +/- 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al. (2009). This detection disfavors the afterglow model in which the magnetic fields in the emission region are random on the plasma skin depth scales, such as amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.Comment: 12 pages, 4 figures, accepted for publication in ApJ Letter

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope discovered a rapid (about 5 days duration), high-energy (E >100 MeV) gamma-ray outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3 1502+10, z=1.839) starting on August 05, 2008 and followed by bright and variable flux over the next few months. Results on the gamma-ray localization and identification, as well as spectral and temporal behavior during the first months of the Fermi all-sky survey are reported here in conjunction with a multi-waveband characterization as a result of one of the first Fermi multi-frequency campaigns. The campaign included a Swift ToO (followed up by 16-day observations on August 07-22, MJD 54685-54700), VLBA (within the MOJAVE program), Owens Valley (OVRO) 40m, Effelsberg-100m, Metsahovi-14m, RATAN-600 and Kanata-Hiroshima radio/optical observations. Results from the analysis of archival observations by INTEGRAL, XMM-Newton and Spitzer space telescopes are reported for a more complete picture of this new gamma-ray blazar.Comment: 17 pages, 11 figures, accepted for The Astrophysical Journa
    • 

    corecore