6 research outputs found

    Ітеративне використання великих хімічних просторів у пошуку лікарських засобів

    Get PDF
    Aim. To demonstrate the advantages of large-scale virtual libraries generated using chemical protocols previously validated in primary steps of the drug discovery process.Results and discussion. Two validated parallel chemistry protocols reported earlier were used to create the chemical space. It was then sampled based on diversity metric, and the sample was subjected to the virtual screening on BRD4 target. Hits of virtual screening were synthesized and tested in the thermal shift assay.Experimental part. The chemical space was generated using commercially available building blocks and synthetic protocols suitable for parallel chemistry and previously reported. After narrowing it down, using MedChem filters, the resulting sub-space was clustered based on diversity metrics. Centroids of the clusters were put to the virtual screening against the BRD4 active center. 29 Hits from the docking were synthesized and subjected to the thermal shift assay with BRD4, and 2 compounds showed noticeable dTm.Conclusions. A combination of cheminformatics and molecular docking was applied to find novel potential binders for BRD4 from a large chemical space. The selected set of predicted molecules was synthesized with a 72 % success rate and tested in a thermal shift assay to reveal a 6 % hit rate. The selection can be performed iteratively to fast support of the drug discovery.Мета. Продемонструвати переваги віртуальних бібліотек великого розміру, згенерованих за валідованими раніше хімічними протоколами, на перших етапах пошуку лікарських засобів.Результати та їх обговорення. На основі двох валідованих методів синтезу, придатних для паралельної хімії, описаних раніше, було створено хімічний простір. На основі різноманітності з одержаної віртуальної бібліотеки зроблено вибірку, яку було піддано віртуальному скринінгу щодо активного центру білка BRD4. Хіти віртуального скринінгу було синтезовано й перевірено за допомогою диференційної сканувальної калориметрії.Експериментальна частина. На основі комерційно доступних вихідних реагентів та раніше репрезентованих синтетичних протоколів, придатних для паралельної хімії, згенеровано хімічний простір. Простір було зменшено за рахунок застосування медхімічних фільтрів; результатний підпростір було кластеризовано за критерієм різноманітності. Центроїди кластерів було піддано молекулярному докінгу щодо активного центру білка BRD4. Базуючись на результатах проведеного докінгу, синтезовано 29 хітів, які було піддано диференційній сканувальній калориметрії з білком BRD4; з цим 2 сполуки продемонстрували помітний зсув точки топлення.Висновки. Для пошуку нових потенційних лігандів BRD4 у великому хімічному просторі було застосовано комбінацію хемоінформатики і молекулярного докінгу. Набір молекул, що мали високу передбачену активність, було синтезовано з успішністю 72 %. Серед синтезованих сполук виявлено первинні хіти (6 % сполук). Подібний процес можна повторювати ітеративно для швидкої підтримки розроблення ліків

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.</p

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    No full text
    corecore