176 research outputs found

    Formal Modelling and Safety Analysis of an Avionic Functional Architecture with Alloy

    Get PDF
    International audienceWe propose an approach based on Alloy to formally model and assess a system architecture with respect to system-level safety requirements. The system on which we instantiate our approach is a specific Required Navigation Performance system from a Thalès Avionics named Localizer Performance with Vertical guidance Approach (LPV). In this article, we describe how to define such a system architecture and how to verify safety objectives

    Computer Gaming and Student Achievement: Investigating Middle School Students’ Behaviors

    Get PDF
    In spite of very little research on the subject, a growing concern exists among professionals that excessive time spent by students on computer gaming may have an undesirable effect in scholastic achievement. In this study, middle grade students self-reported their time spent on computer gaming for a one week time period. These self-reports were related with their GPAs at the end of the semester. Analysis of 114 students’ GPAs in English, Math, and Science indicated the presence of a statistically significant difference in English GPAs between students in the High Computer Gaming group from students in the Moderate and Low Computer Gaming groups. No differences were yielded for Math or Science GPAs. Implications are discussed

    Assessment of a pilot solar V-trough reactor for solar water disinfection

    Get PDF
    Rural and isolated communities of low-income countries suffer the lack of access to safe drinking water. Harvested rainwater (HRW) is becoming an alternative source of freshwater in many areas of the world. Nevertheless, its quality usually doesn’t meet drinking water standards, posing a health risk for human consumption. Solar water disinfection – SODIS – is a low-cost household intervention used to disinfect water. In this work, we investigate a new solar photoreactor based on V-trough mirrors as alternative to the most used Compound Parabolic Collector (CPC) geometry at pilot scale (54 and 32 L per batch), with the aim of reducing costs and reactor surface’s footprint. An experimental assessment of two key parameters as water recirculation and mirror geometry was carried out. For this study several water-pathogens commonly found in HRW were used, Escherichia coli, Enterococcus faecalis, Salmonella enteritidis and Pseudomonas aeruginosa. Best results were obtained with the V-trough reactor in static condition, where>5-LRV (log-reduction value) for all bacteria tested were reached with asolar-UVA dose of254 kJm−2 (90min). Atthis operational condition, a total volume of 162 L(3 batches) of waterwere treated inone full sunny day in Spain(300 min ofeffectivetreatment time). A comparison between CPC and V-trough mirrors resulted in similar disinfection efficiencies even if the actinometric results showed that CPC collects 1.58 times more photon flux than the V-trough in the solar-UVA region. These results show the great performance of the V-trough mirror for this application, which is cheaper to produce than CPC and permits treating higher amounts (66% more) of water for the same collector area and same treatment time

    Validation of large-volume batch solar reactors for the treatment of rainwater in field trials in sub-Saharan Africa

    Get PDF
    The efficiency of two large-volume batch solar reactors [Prototype I (140 L) and II (88 L)] in treating rainwater on-site in a local informal settlement and farming community was assessed. Untreated [Tank 1 and Tank 2-(First-flush)] and treated (Prototype I and II) tank water samples were routinely collected from each site and all the measured physico-chemical parameters (e.g. pH and turbidity, amongst others), anions (e.g. sulphate and chloride, amongst others) and cations (e.g. iron and lead, amongst others) were within national and international drinking water guidelines limits. Culture-based analysis indicated that Escherichia coli, total and faecal coliforms, enterococci and heterotrophic bacteria counts exceeded drinking water guideline limits in 61%, 100%, 45%, 24% and 100% of the untreated tank water samples collected from both sites. However, an 8 hour solar exposure treatment for both solar reactors was sufficient to reduce these indicator organisms to within national and international drinking water standards, with the exception of the heterotrophic bacteria which exceeded the drinking water standard limit in 43% of the samples treated with the Prototype I reactor (1 log reduction). Molecular viability analysis subsequently indicated that mean overall reductions of 75% and 74% were obtained for the analysed indicator organisms (E. coli and enterococci spp.) and opportunistic pathogens (Klebsiella spp., Legionella spp., Pseudomonas spp., Salmonella spp. and Cryptosporidium spp. oocysts) in the Prototype I and II solar reactors, respectively. The large-volume batch solar reactor prototypes could thus effectively provide four (88 L Prototype II) to seven (144 L Prototype I) people on a daily basis with the basic water requirement for human activities (20 L). Additionally, a generic Water Safety Plan was developed to aid practitioners in identifying risks and implement remedial actions in this type of installation in order to ensure the safety of the treated water

    Challenges and considerations for in-flight monitoring of pilots and crews

    Get PDF
    Human functional state assessment research has employed neurological, physiological and behavioral monitoring for several decades, but few real world applications have emerged in safety systems. For instance, physiological monitoring of flight crews is done experimentally, but is generally not available for normal operations despite safety incentives. This presentation will address critical challenges in research and development of monitoring solutions, and how they can be overcome. We will consider three applications: health monitoring in exploration class space mission crews; vigilance monitoring in civilian commercial airline crews; and pilot state assessment in military flight training

    How generic is cosmic string formation in SUSY GUTs

    Full text link
    We study cosmic string formation within supersymmetric grand unified theories. We consider gauge groups having a rank between 4 and 8. We examine all possible spontaneous symmetry breaking patterns from the GUT down to the standard model gauge group. Assuming standard hybrid inflation, we select all the models which can solve the GUT monopole problem, lead to baryogenesis after inflation and are consistent with proton lifetime measurements. We conclude that in all acceptable spontaneous symmetry breaking schemes, cosmic string formation is unavoidable. The strings which form at the end of inflation have a mass which is proportional to the inflationary scale. Sometimes, a second network of strings form at a lower scale. Models based on gauge groups which have rank greater than 6 can lead to more than one inflationary era; they all end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR

    The effect of different training modes on skeletal muscle microvascular density and endothelial enzymes controlling NO availability

    Get PDF
    It is becoming increasingly apparent that a high vasodilator response of the skeletal muscle microvasculature to insulin and exercise is of critical importance for adequate muscle perfusion and long-term microvascular and muscle metabolic health. Previous research has shown that a sedentary lifestyle, obesity, and ageing lead to impairments in the vasodilator response, while a physically active lifestyle keeps both microvascular density and vasodilator response high. To investigate the molecular mechanisms behind these impairments and the benefits of exercise training interventions, our laboratory has recently developed quantitative immunofluorescence microscopy methods to measure protein content of eNOS and NAD(P)Hoxidase specifically in the endothelial layer of capillaries and arterioles of human skeletal muscle. As eNOS produces NO and NAD(P)Hoxidase superoxide anions (quenching NO) we propose that the eNOS/NAD(P)Hoxidase protein ratio is a marker of vasodilator capacity. The novel methods show that endurance training (ET) and high intensity interval training (HIT) generally regarded as a time efficient alternative to ET, increase eNOS protein content and the eNOS/NADP(H) oxidase protein ratio in previously sedentary lean and obese young men. Resistance exercise training had smaller but qualitatively similar effects. Western blot data of other laboratories suggest that endurance exercise training leads to similar changes in sedentary elderly men. Future research will be required to investigate the relative importance of other sources and tissues in the balance between NO and O2- production seen by the vascular smooth muscle layer of terminal arterioles

    Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: joint position statement

    Get PDF
    Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications

    DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration

    Get PDF
    Purpose: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). Methods: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). Results: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2–4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). Conclusion: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD

    Genetics of human hydrocephalus

    Get PDF
    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions
    corecore