44 research outputs found

    Frateuria defendens reduces yellows disease symptoms in grapevine under field conditions

    Get PDF
    Yellows diseases in grapevine, associated with the presence of different phytoplasmas, are a major problem for growers, with no environmentally friendly means of control. Frateuria defendens (Frd), a bacterium with endophytic traits, has been shown to reduce yellows symptoms in grapevine plantlets under laboratory conditions. The objective of this study was to test whether similar effects could be achieved under field conditions. A trial was conducted in a heavily infected vineyard in northern Israel for two consecutive years. A suspension of Frd cells (108·mL-1) was applied bi-weekly by foliar spray on grapevines from bud burst to leaf senescence. Frd penetrated the leaves during the growing period but not during leaf senescence and could be detected in the leaves by PCR analysis up to 14 days post-spraying. The rate of yellows infection was lower in the treated grapevines compared to its increase in untreated grapevines and the yield of symptomatic plants was improved by 10 to 20 %. Taken together, the results suggest Frd acted as a biological control agent in vineyards under the experimental conditions tested

    Evidence of a bacterial core in the stored products pest Plodia interpunctella: the influence of different diets

    Get PDF
    The potential influence of insects' feeding behaviour on their associated bacterial communities is currently a matter of debate. Using the major pest of commodities, Plodia interpunctella, as a model and adopting a culture-independent approach, the impact of different diets on the host-associated microbiota was evaluated. An analysis of similarity showed differences among the microbiotas of moths fed with five substrates and provided evidence that diet represents the only tested factor that explains this dissimilarity. Bacteria shared between food and insects provide evidence for a limited conveyance to the host of the bacteria derived from the diet; more likely, the content of carbohydrates and proteins in the diets promotes changes in the insect's microbiota. Moth microbiotas were characterized by two robust entomotypes, respectively, associated with a carbohydrate-rich diet and a protein-rich diet. These results were also confirmed by the predicted metagenome functional potential. A core microbiota, composed of six taxa, was shared between eggs and adults, regardless of the origin of the population. Finally, the identification of possible human and animal pathogens on chili and associated with the moths that feed on it highlights the possibility that these bacteria may be conveyed by moth frass

    Evaluation of the biocontrol activity of Frateuria defendens-derived metabolites against mollicutes

    No full text
    Frateuria defendens is a candidate biocontrol agent that has been shown to reduce phytoplasma-related disease symptoms in grapevines and periwinkle plants. While a crude filtrate prepared from F. defendens can inhibit mollicute growth, the specific growth parameters for this bacterium, necessary to enhance this protective inhibitory response, remain unknown. Moreover, the separation of filtrate preparations from bacterial cells via centrifugation and filtration is laborious and time-consuming. As such, the present study was conducted to define the optimal growth conditions associated with maximal inhibitory activity of F. defendens and to establish a better approach to separating these bacterial cells from their secreted metabolites. To conduct these analyses, F. defendens was cultured in a range of media types, while associated inhibitory effects were tested in vitro using Spiroplasma melliferum as a model mollicute bacterium, and in planta using phytoplasma-infected periwinkle plantlets. These analyses revealed F. defendens growth patterns change based upon media composition, with filtrates prepared from a specific rich medium (S-medium) exhibiting beneficial activities, including the inhibition of S. melliferum and enhanced plant growth. When F. defendens cells were grown within semi-permeable, membrane-coated Small Bioreactor Platform (SBP) capsules, they could be more readily separated from the secreted metabolite fraction, obviating the need for filtration and/or centrifugation. This study is the first to have reported the use of SBP capsules to separate bacterial cells from their secreted metabolites under sterile conditions while retaining the ability of these metabolites to inhibit S. melliferum growth and to benefit the host plant. The results highlight promising new approaches to the effective biocontrol of phytoplasma-driven diseases in grapevines and other economically important plant species
    corecore