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Summary

The potential influence of insects’ feeding behaviour

on their associated bacterial communities is current-

ly a matter of debate. Using the major pest of

commodities, Plodia interpunctella, as a model and

adopting a culture-independent approach, the impact

of different diets on the host-associated microbiota

was evaluated. An analysis of similarity showed dif-

ferences among the microbiotas of moths fed with

five substrates and provided evidence that diet repre-

sents the only tested factor that explains this

dissimilarity. Bacteria shared between food and

insects provide evidence for a limited conveyance to

the host of the bacteria derived from the diet; more

likely, the content of carbohydrates and proteins in

the diets promotes changes in the insect’s micro-

biota. Moth microbiotas were characterized by two

robust entomotypes, respectively, associated with a

carbohydrate-rich diet and a protein-rich diet. These

results were also confirmed by the predicted metage-

nome functional potential. A core microbiota,

composed of six taxa, was shared between eggs and

adults, regardless of the origin of the population.

Finally, the identification of possible human and ani-

mal pathogens on chili and associated with the

moths that feed on it highlights the possibility that

these bacteria may be conveyed by moth frass.

Introduction

The Indian meal moth (IMM), Plodia interpunctella (H€ubner

1813) (Lepidoptera: Pyralidae), is a cosmopolitan moth

(Rees, 2004) that infests a multitude of stored-products,

such as different types of cereals, nuts and dried fruits but

also spices and dried meat (Hamlin et al., 1931; Sedlacek

et al., 1996; Nansen et al., 2004; Mohandass et al., 2007;

Fontenot et al., 2012). Due to the wide spectrum of

infested products, P. interpunctella is considered a major

pest of commodities, causing extensive economic dam-

ages by reducing the quality grade of harvested products.

Direct damage is represented by the feeding activity

through all the larval instars, whereas indirect damage is

due to the presence of larval frasses, exuviae and the silk-

web (Allotey and Goswami, 1990). The capability of the

IMM to efficiently colonize a wide spectrum of commodities

poses the question of whether these metabolic capabilities

are host constitutive or if they are provided or improved by

the host-associated bacterial communities.

The establishment of mutualistic associations between

the insect and microorganisms (bacteria, protozoa and

fungi) plays an important role in the evolution of many

insect lineages, such as termites and cockroaches (e.g.,

Bandi et al., 1995; Brune, 1998; L�opez-S�anchez et al.,

2009; K€ohler et al., 2012). Consortia of mutualistic bacteria

provide the host with essential compounds, such as vita-

mins, amino acids and sterols, but they also contribute to

the digestion of ingested materials (e.g., Moran et al.,

2003; Moran, 2006; Douglas, 2009; L�opez-S�anchez et al.,

2009; McCutcheon et al., 2009). In addition, it was recently

postulated that a diversified host-associated microbiota

may confer selective advantages to their host in changing

environments, providing the capability to exploit different

food sources, and thus, adapt to new ecological niches

(Montagna et al., 2015a; Sudakaran et al., 2015).

Although the importance of bacterial communities on

insect physiology is well recognized, the evolutionary and

ecological determinants (e.g., diet, life stage, gender and

host environment) that shape these communities are not

well understood. The intuitive role played by the host’s

food substrate in shaping the associated bacterial commu-

nities has been previously established in several insects,
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such as the cockroach Periplaneta americana, the cotton

bollworm Helicoverpa armigera, the mealybug Planococ-

cus ficus, and the red palm weevil Rhynchophorus

ferrugineus (Kane and Breznak, 1991; Priya et al., 2012;

Iasur-Kruh et al., 2015; Montagna et al., 2015a). Neverthe-

less, a limited or even null impact on the host-associated

bacterial community was determined in the case of Spo-

doptera littoralis (Tang et al., 2012) and in a closely related

leaf beetle species (Montagna et al., 2015b); in the latter

case, the altitude of the sites where the specimens were

collected generated the ecological trait that affected the

insect’s microbiota. These results suggest that the host’s

microbiota is influenced by a multitude of biological factors,

such as the host trophic guilds, and environmental factors,

such as the altitude of the collecting site.

In this study, using a culture-independent approach based

on 454 pyrosequencing targeting the bacterial 16S rRNA

gene, we used the IMM P. interpunctella as a study model to

address the following biological questions: (i) Are the micro-

biotas associated with insects reared on five types of diet

different? (ii) Is there a core microbiota associated with eggs

that is retained until adulthood, regardless of diet and popu-

lation origin? (iii) Are the microbiotas associated with adults

transferred from food via ingestion? The presence of bacte-

ria potentially hazardous for human and/or animal health

was also evaluated.

Results and discussion

a, b-diversity and community structure

In total, the analysed samples yielded approximately

200,000 16S rRNA reads. After the removal of the low-

quality bases, chimeras, mitochondrial and chloroplast

sequences, a total of 79,933 16S rRNA bacterial sequen-

ces were retained, of which 78,278 of the bacterial reads

were associated with P. interpunctella specimens (average

3,011) and 1,655 were associated with their food (average

331). The 16S rRNA bacterial gene sequences were clus-

tered into 1611 bacterial operational taxonomic units

(OTUs; Table 1). The bacterial communities associated

with P. interpunctella reared on an artificial diet and pizzoc-

cheri and characterized by the highest carbohydrate

content had the highest species diversity (Table 1), with an

average number (6SD) of 195 6 49 and 192 6 89.7

detected OTUs. Only 62 OTUs were associated with the

insects reared on fava beans (high protein content). A rela-

tionship between the protein content of the insect’s diet

and the bacterial diversity associated with the host was

previously observed in different species, such as in Dro-

sophila spp., Lymantria dispar and Blattella germanica

(Chandler et al., 2011; Mason and Raffa, 2014; P�erez-

Cobas et al., 2015). The bacterial communities associated

with the IMMs analysed in this study showed, on average,

a significantly higher number of bacterial OTUs compared

with OTU abundance reported in other studies for different

caterpillars (Broderick et al., 2004; Yu et al., 2008; Pinto-

Tom�as et al., 2011). The recovered differences in the OTU

richness may be explained by the fact that the IMMs, feed-

ing on a variety of stored products, do not require a

selected microbiota but will benefit from the diversified

metabolic capabilities provided by a differentiated micro-

biota, whereas the latter feed on plant tissues, which are

potentially rich in secondary compounds or allelochemicals

that benefit a selected microbiota to overcome plant consti-

tutive biochemical barriers.

The highest values of the Shannon and Pielou’s even-

ness indices (Table 1) were recovered in the microbiotas

associated with specimens feeding on moringa leaves and

chili (3.70 and 3.36, 0.77 and 0.75 respectively), whereas

the bacterial communities of the P. interpunctella feeding

Table 1. Diversity indices estimated for the bacterial communities
associated with the analysed samples: eggs, adults and food
substrates.

Identifier Gender Food Sobserved
a SChao

b
Shannon

H’
Pielou

J’

Eggs - - 121 215.1 3.79 0.79

Pad.1F $ Artificial diet 216 368.8 2.63 0.49

Pad.2F $ Artificial diet 158 438.1 2.70 0.53

Pad.3F $ Artificial diet 264 535.4 2.75 0.49

Pad.1M # Artificial diet 140 217 2.37 0.48

Pad.2M # Artificial diet 196 359.8 2.65 0.50

Ppiz.1F $ Pizzoccheri 177 331.1 2.26 0.44

Ppiz.2F $ Pizzoccheri 105 181.2 2.34 0.50

Ppiz.3F $ Pizzoccheri 162 300.8 2.31 0.45

Ppiz.1M # Pizzoccheri 173 278.6 2.16 0.42

Ppiz.2M # Pizzoccheri 344 552 2.18 0.37

Pchil.1F $ Chili 107 197 3.79 0.81

Pchil.2F $ Chili 138 207.5 3.74 0.76

Pchil.3F $ Chili 87 153 3.44 0.77

Pchil.1M # Chili 44 70.3 2.91 0.77

Pchil.2M # Chili 89 114 2.92 0.65

Pfav.1F $ Fava bean 60 90 3.13 0.76

Pfav.2F $ Fava bean 68 102.5 3.06 0.73

Pfav.3F $ Fava bean 19 21.5 1.98 0.67

Pfav.1M # Fava bean 77 94.3 3.49 0.80

Pfav.2M # Fava bean 86 117 2.94 0.66

Pmor.1F $ Moringa 99 162 3.50 0.76

Pmor.2F $ Moringa 130 161.7 3.81 0.78

Pmor.3F $ Moringa 104 128.5 3.89 0.84

Pmor.1M # Moringa 111 166.5 3.46 0.74

Pmor.2M # Moringa 160 222.7 3.83 0.76

Food_ad Artificial diet 128 197.8 3.51 0.72

Food_piz Pizzoccheri 52 98.8 3.35 0.85

Food_chil Chili 80 111.1 2.32 0.53

Food_fav Fava bean 1 1 0 -

Food_mor Moring 2 2 0.64 0.92

a. Number of OTUs observed in the microbiota of each sample.
b. Number of OTUs estimated to be present in the microbiota of
each sample.
P: Plodia interpunctella; ad: artificial diet; piz: pizzocchero; chil:
chili; fav: fava beans; mor: moringa leaves; M: male; F: female.
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on an artificial diet and pizzoccheri had the lowest values

(Table 1). The fact that the bacterial communities associat-

ed with these latter samples are unbalanced was also

confirmed by the abundance of the most dominant OTU,

which, respectively, establishes 45.4% and 57.7% of the

total retrieved bacterial 16S rRNA sequences (Fig. 1C).

With respect to the microbiotas of the food sources, 128

bacterial OTUs were found in the artificial diet, whereas

only one and two OTUs were detected in moringa and chili

respectively.

The b-diversity, measured as Sørensen’s dissimilarity,

was estimated over the three groups of IMMs from the lab-

oratory population sharing a common origin and genotype.

The values obtained for the two components of the b-

Fig. 1. Experimental design, taxonomic composition of the microbiotas and cumulative abundance of the dominant bacterial OTUs.

A. Plodia interpunctella from different populations (laboratory-reared and wild) were reared until adulthood on different substrates (artificial diet,

Moringa oleifera leaves, Vicia faba beans, Capsicum annum powder, and white-black buckwheat noodles). DNA was extracted from the eggs

of the laboratory-reared population, from five adults (three females and two males) of each group and from the food resources.

B. The taxonomical composition of the microbiotas associated with the analysed samples (eggs, adults and food substrate) reported at the

phylum and family levels (upper and lower bars respectively). The average abundance across the five adult specimens is reported; only the

bacterial families with an average abundance �5% in the IMM group are reported, and bacterial families with an abundance lower than 5% are

grouped in the category other families. Abbreviations: Cor: Corynebacteriaceae; Mic: Microbacteriaceae; Pro: Propionibacteriaceae; Com:

Comamonadaceae; Ent: Enterobacteriaceae; Rho: Rhodocyclaceae; Pse: Pseudomonadaceae; Rhi: Rhizobiaceae; Bac: Bacillaceae; Pae:

Paenibacillaceae; Sta: Staphylococcaceae; Aer: Aerococcaceae; Ent: Enterococcaceae; Str: Streptococcaceae.

C. Box-plot of the cumulative abundance of the dominant bacterial OTUs (first five) associated with the adult moths reared on different

substrates; yellow: moringa leaves; lilac: fava beans; green: artificial diet; red: chili powder; and cyan: white-black buckwheat.
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diversity, the turnover and the nestedness (respectively,

bSIM 5 0.56 and bNES 5 0.2), indicate that only approxi-

mately 20% of the bacterial OTUs is shared among the

three analysed groups. The differences in the bacterial

communities associated with all five groups of P. interpunc-

tella were confirmed by an ANOSIM analysis (P< 0.001).

Factors affecting the bacterial community structure

The non-metric multi-dimensional scaling analyses, per-

formed on the moth-associated bacterial OTUs (Chao and

Weighted UniFrac distance matrices), were fitted with fac-

tors potentially affecting the microbiota composition and

structure as follows: (i) the diet; (ii) the IMM population of

origin and (iii) the IMM gender (Fig. 2). The diet was the

only tested trait able to explain the dissimilarity among the

moth-associated bacterial communities (NMDSChao R2 5

0.49, P 5 0.0002, stress 5 0.08; NMDSUniFrac R2 5 0.63,

P 5 0.0001, stress 5 0.09), whereas the gender and popu-

lation origin did not significantly affect the insect

microbiotas. This result is in agreement with those recently

achieved in the case of higher termites, Blattella german-

ica and in the larvae of Melitaea cinxia (Mikaelyan et al.,

2015; P�erez-Cobas et al., 2015; Ruokolainen et al., 2016)

and provides further evidence for the relevant role of the

host’s diet in moulding the associated bacterial community.

A possible hypothesis, supported by published studies

and that should be tested in a rigorous framework, is that

the microbiota associated with a generalist insect, in

terms of exploitation of food resources, seems to be more

influenced by diet typologies compared to those that are

more specialized. An exemplary case of the latter is

represented by the pine weevil (Hylobius abietis), where its

microbiota remains almost unchanged across Europe, and

interestingly, it differs from closely related weevil not asso-

ciated with conifers but is highly similar to that of bark

beetles that feed on conifers (Berasategui et al., 2016).

On the basis of the Calinski-Harabasz index and a sil-

houette score of 0.38, two consistent groups of bacteria

(hereafter, entomotypes from the Greek entomon mean-

ing insect and referred to as consistent groups of

bacteria present within the volume delimited by the exo-

skeleton), were identified within the IMM microbiotas.

The two groups were clearly segregated by the first

NMDS axis and were independent of the moth population

of origin (Fig. 2). The first group is associated with the

specimens that fed on an artificial diet and pizzoccheri,

whereas, in the second group, the specimens fed on

moringa, fava beans and chili. The taxonomic composi-

tion and the relative taxa abundance of the two groups

are reported in the next section.

Bacterial taxonomic composition of the IMM and food

microbiotas

The microbiotas associated with the IMMs fed an artificial

diet and pizzoccheri as well as the bacterial community

associated with the eggs were dominated by taxa belong-

ing to Firmicutes (61.6%, 77% and 51% respectively;

Fig. 1B and Table S2), whereas the microbiotas associated

with the specimens fed chili, fava beans and moringa did

not show a dominant taxonomic phylum because the rela-

tive abundances of Proteobateria, Firmicutes and

Actinobacteria were roughly equivalent (Fig. 1B and Table

Fig. 2. Non-metric multidimensional scaling analysis of the bacterial community structure using the Chao (A) and Weighted Unifrac (B)
metrics. The colour of rectangles indicates the different food resources; yellow: moringa leaves; lilac: fava beans; green: artificial diet; red: chili
powder; and cyan: white-black buckwheat. The circular open dots indicate the single organism while the crosses, where present, represent the
identified OTUs. The blue lines connect the individual microbiotas to the centroid values of each group. The ellipses represent a 95%
confidence area around the mean of the group.
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S2). Firmicutes was the dominant taxon and was also in

the microbiota associated with Spodoptera littoralis (Tang

et al., 2012), whereas their abundance is limited in the bac-

terial communities associated with tropical saturniid

caterpillars and in the cabbage root fly larvae (Pinto-Tom�as

et al., 2011; Welte et al., 2016).

Members of the family Aerococcaceae were the domi-

nant component of the microbiotas associated with the

moths reared on an artificial diet and the wild population

that fed on pizzoccheri (52.5% 6 1.77% and 65.4% 6

5.76% respectively; Fig. 3 and Table S3). On the contrary,

the bacterial communities associated with the P. interpunc-

tella feeding on chili, fava bean and moringa were

dominated by members of Propionibacteriaceae (20.7%,

17.6%, and 15% respectively; Fig. 3). A second major

component in the microbiota of the moths feeding on chili

was represented by Comamonadaceae (14.6%; Fig. 3).

Streptococcaceae (19.9%) and Propionibacteriaceae

(8.34%), which were the dominant families in the egg

microbiotas (Fig. 3).

The genus Atopococcus (family Carnobacteriaceae)

characterized the entomotype of the P. interpunctella

reared on an artificial diet and pizzoccheri, representing

45.4% 6 1.42% and 56.2% 6 4.67%, respectively, of the

16S rRNA gene reads (Fig. 4A and Tables 2 and S4). The

relative abundance of Atopococcus in the moths fed chili,

moringa, fava beans and eggs was lower than that in the

insects reared on an artificial diet and pizzoccheri (Tables

2 and S4); nevertheless, the presence of this bacterial

genus in the majority of the analysed samples allows us to

speculate that Atopococcus might represent a potential

symbiont of P. interpunctella.

Fig. 3. Histogram representing the
taxonomic assignment of the 16S rRNA
gene sequences to the bacterial family for
the IMM eggs and adults. Only the
bacterial families with an abundance �5%
in at least one moth specimen are
reported, and bacterial families with an
abundance lower than 5% are grouped in
the category other families. Each bar
corresponds to a single individual.

Fig. 4. Boxplots of the bacterial entomotypes characterising the two groups of IMMs identified by the NMDS and clustering analyses.

A. Atopococcus entomotype characterising the P. interpunctella specimens reared on an artificial diet and pizzoccheri.

B. Propionibacterium entomotype associated with the moths fed chili, fava beans and moringa.
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Lactic acid bacteria (LAB) is found as a typical inhabitant

in the insect gut (especially the foregut), such as in the

wood- and soil-feeding termites (Bauer et al., 2000), cock-

roaches (Kane and Breznak, 1991) and honeybees (Apis

spp.; V�asquez et al., 2009; Olofsson et al., 2011). The bio-

logical role of LAB with respect to insect physiology

remains, at present, poorly investigated and understood. In

cockroaches, lactate produced by LAB is used to support

the animal’s respiratory requirements (Kane and Breznak,

1991) or plays a fundamental role in the insect’s aggrega-

tive behaviour (McFarlane and Alli, 1986); in honeybees,

LAB is involved in the defense against the insect’s patho-

gens (V�asquez et al., 2012). Based on previous evidence,

we hypothesize that LAB-mediated pathogen protection

represents a useful adaptation for the generalist trophic

behaviour of IMM; the involvement of LAB lactate in the

IMM aggregating semiochemicals cannot be excluded.

Metabolic potential

The metagenomic functional potential of the bacterial com-

munities associated with the IMMs fed from different

resources was inferred from the bacterial 16S rRNA

sequences using PICRUSt (Langille et al., 2013; Table

S5). Among the five groups of IMMs significant differences

were recovered by the Kruskal–Wallis test (P<0.05) in a

Fig. 5. Mann–Whitney–
Wilcoxon table reporting the
categories of functional
potential, inferred from the
bacterial 16S rRNA gene
sequences for which
differences among the five-
group were recovered by the
Kruskal–Wallis test. Mann–
Whitney–Wilcoxon test were
performed to assess the
differences in the pairwise
comparisons of IMM groups:
the white squares indicate a
P� 0.05, while the grey
squares indicate a P< 0.05.
EIP: environmental information
processing; GIP: genetic
information processing; M:
metabolism; U: unclassified;
MT: membrane transport; FSD:
folding sorting and
degradation; RR: replication
and repair; T: translation; AAM:
amino acid metabolism;
BOSM: biosynthesis of other
secondary metabolites; CM:
carbohydrate metabolism; EM:
energy metabolism; GBM:
glycan biosynthesis and
metabolism; LM: lipid
metabolism; MCV: metabolism
of cofactors and vitamins;
MOAA: metabolism of other
amino acids; MTP: metabolism
of terpenoids and polyketides;
XBM: xenobiotics
biodegradation and
metabolism; CPS: cellular
processes and signalling.
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total of 38 functional categories (Fig. 5 and Table S6). The

majority of these categories are related to metabolism

(31), while only few cases were observed for genetic (3)

and environmental (1) information processing (Fig. 5).

Within the functional categories related to metabolism, the

majority relapsed to the metabolism of amino acids, cofac-

tors and vitamins, including both biosynthesis and

catabolism (Fig. 5).

Interestingly, no differences in functional potential were

assessed by the Mann–Whitney–Wilcoxon test with Hoch-

berg correction for pairwise comparisons between the

IMMs reared on moringa leaves, fava beans and chili pep-

per powder (Fig. 5 and Table S7). This result represents a

metabolic confirmation of the pattern achieved by the

NMDS analyses (Figs 2 and 4), where these three groups

of insects belong to the same cluster and are character-

ized by the Propionibacterium entomotype. Similar results,

with no differences in a total of 20 of 38 functional catego-

ries, were obtained for comparisons between the IMMs

reared on an artificial diet and pizzoccheri and the two

groups characterized by the Atopococcus entomotype and

recovered in the same cluster by NMDS analyses (Figs 2

and 4). All of the remaining pairwise comparisons pos-

sessed the highest number of differences in the functional

categories.

The achieved pattern is congruent with the detected

bacterial entomotypes (Fig. 4) as well as with the differ-

ences in the nutrient composition of the food resources. An

artificial diet and pizzoccheri possessed the highest

amount of carbohydrates (more than 50%; Table S8) with

a low protein content (high C:N ratio; Table S8), whereas,

on the contrary, the moringa leaves, chili powder and fava

beans are characterized by low carbohydrates and a high

protein content (low C:N ratio; Table S8).

Impact of the eggs and diet microbiotas on the adult
bacterial communities

The bacterial OTUs associated with the eggs/food resour-

ces and retained by a majority of the adult specimens (i.e.,

in at least three out of five specimens) were inferred from

the OTU table and were then visualized through a co-

occurrence table (Fig. 6 and Tables S9 and S10). The

moths reared on an artificial diet, moringa leaves and fava

beans, which came from the same population, retained,

until adulthood, 35, 37 and 10 bacterial OTUs of the eggs

microbiota, respectively (average number of OTU reads

per sample of 109, 26 and 33; Figs 6, S1 and S2); in con-

trast, only a few (11 in the case of artificial diet) or none (in

moringa and fava beans) of the bacterial OTUs associated

with food resources were recovered in the insect microbio-

tas. Similar results were also achieved in the case of the

IMMs from the population fed with pizzoccheri (41 OTUs

were retained from the eggs and five from the food, with

an average number of OTU reads per sample of 102; Figs

6, S1 and S2). A slightly different result was achieved in

the case of the moths reared on chili powder, where the

same number of OTUs (15), even if with taxonomic differ-

ences, was shared between the eggs (average number of

Fig. 6. Co-occurrence OTUs table. For each IMM group, the co-
occurrence table reports the IMM bacterial OTUs shared between
the eggs from the laboratory-established population (left) and the
food resource used for larval development (right). The colour of the
rectangles indicates the different IMM groups: yellow: moringa
leaves; lilac: fava beans; green: artificial diet; red: chili powder; and
cyan: white-black buckwheat. The red squares of the table indicate
the OTU co-occurrence, while the black squares indicate no co-
occurrence of the bacterial OTU.
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OTU reads per sample of 42) and the diet microbiotas.

The co-occurrence of diet-associated bacteria in the host

could be the result of two effects that are not easily distin-

guishable: (i) the inoculation of the insect with food-

associated bacteria through ingestion, or alternatively, (ii)

the contamination of food resources by insect frass con-

veying host bacteria and/or their DNA. Even if conclusive

results could not be reached, it is reasonable to interpret

our findings as a result of the second effect because diges-

tive enzymes, pH and reactive oxygen species present in

the insect gut usually kill most of the bacteria ingested with

food (Vallet-Gely et al., 2008; Garcia et al., 2010). For this

reason, the IMMs may convey bacteria to humans or ani-

mals on the infested harvested products, especially in the

case of food consumed raw, such as spices, nuts and dry

meat. In the present study, the OTUs identified as Staphy-

lococcus (OTU 1242 and 3023; Fig. 6) and Streptococcus

(OTU 4214; Fig. 6), which are two genera that include spe-

cies pathogenic to humans and animals (Schleifer and

Bell, 2009; Whiley and Hardie, 2009), were found in asso-

ciation with the infested chili pepper. Because our results

are based only on a fragment of approximately 400 bp of

the 16S rRNA and this topic is outside of the scope of our

research, we believe that further investigations are

required to isolate and identify these bacteria.

All of the groups of insects, at least in three specimens

out of the analysed five, retained, until adulthood, six bac-

terial OTUs of the eggs microbiota (average number of

OTU reads per sample of 53 and 49, in the adults and

eggs respectively). These taxa, represented by Propioni-

bacterium (three OTUs), Staphylococcus (two OTUs) and

one OTU assigned to the family Xanthomonadaceae, are

regarded as the core microbiota, i.e., the number and iden-

tity of the bacteria associated with the eggs and retained

until insect adulthood independently from the population of

origin (Fig. 6). The co-occurrence of bacterial phylotypes

between sterilized eggs and the midgut of caterpillars was

also observed in the case of Rothschildia lebeau (Pinto-

Tom�as et al., 2011). The mechanisms behind the transmis-

sion of the core microbiota from egg to adult were not

elucidated in this study; however, we can hypothesize that

the newborn larvae, using the egg corion as the first meal

after hatching, acquires the associated bacterial communi-

ty from which partially derives the adult microbiota.

Venn diagrams, reporting the bacterial OTUs shared

among the five groups of IMMs, highlighted the presence

of 42 OTUs shared among the five groups of samples (Fig.

S3). This number includes the core microbiota shared with

the eggs plus 36 further bacterial OTUs.

Conclusion

The bacterial communities associated with the analysed

Indian meal moths were relatively complex and diversified

(see Table 1), with the maximum number of bacterial

OTUs recovered in the moths reared on an artificial diet

(OTUsavg 5 195) and the minimum in the case of the moths

fed with fava beans (OTUsavg 5 62). Notably, the microbio-

tas associated with P. interpunctella were characterized by

a relatively high species richness if compared with that of

phytophagous caterpillars (e.g., Broderick et al., 2004; Yu

et al., 2008; Pinto-Tom�as et al., 2011; Tang et al., 2012).

These results are in agreement with the hypothesis that

diversified host-associated microbiotas may confer essen-

tial metabolic capabilities in exploiting highly different food

sources, as in the case of P. interpunctella.

As reported for other insects (e.g., cockroaches, the cot-

ton bollworm and the red palm weevil), and also in the

case of P. interpunctella, the diet on which larvae have

developed significantly contributes to the shaping of the

structure and taxonomy of the associated bacterial com-

munities. Nonetheless, considering the bacteria associated

with food and shared with the insect, our findings provide

evidence for a limited role of the diet in the active convey-

ing of bacteria to the host. Conversely, the data from this

study support the alternative hypothesis that diets with dif-

ferent compositions indirectly promote changes in the host-

associated bacterial communities. The comparison of the

microbiotas associated with eggs from the laboratory pop-

ulation with those associated with adults from different

populations, including those from the laboratory, highlights

the presence of a six-OTU bacterial core. Future studies,

with the inclusion of specimens from different geographic

areas and developed on different substrates, are required

to confirm the presence of the identified bacterial core and,

if confirmed, to elucidate the possible mechanisms of its

transmission through generations (i.e., by feeding the egg

corion or by transovarian transmission).

Interestingly, the five groups of IMMs were characterized

by two different entomotypes (Figs 2 and 4). The first was

dominated by bacteria of the genus Atopococcus, and the

second was dominated by Propionibacterium and Strepto-

coccus. The identification of LAB in the microbiota of P.

interpunctella represent an interesting discovery because

it was demonstrated that these bacteria could play an

important role in insect biology. Apart from the possible

biological role played by the LAB, these bacteria represent

a possible target to control IMMs by developing symbiotic

control strategies.

The functional potential of the IMMs microbiotas, pre-

dicted on the basis of 16S rRNA gene sequences,

confirmed, from a metabolic point of view, the separation of

bacterial communities associated with the IMM in two dis-

tinct groups (Figs 2, 4 and 5) and characterized by two

different entomotypes. The majority of the between-group

differences are related to metabolism (Fig. 5), and in particu-

lar, with the metabolism of amino acids, cofactors and

vitamins. The achieved pattern is also congruent with the
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differences of the food resources in nutrient composition,

with the artificial diet and pizzoccheri (high carbohydrates

and low proteins) on one side and moringa leaves, chili and

fava beans (low carbohydrates and high protein) on the

other.

Further investigations are required to understand the

possible involvement of IMMs in conveying bacterial patho-

gens to the food substrates used for development.

Experimental procedures

Experimental design

All of the Plodia interpunctella specimens used in the assays

were laboratory reared on different substrates under con-

trolled conditions of light (light-dark cycle 16:8), humidity

(RH 5 70% 6 5%) and temperature (27 6 18C). In order to

evaluate the impact of the diet in shaping the microbiotas

associated with the IMM, 90 out of 120 eggs collected ran-

domly from the same cohort of the laboratory-reared

population, from a line maintained since 1980 in the rearing

facilities established at the DEFENS, were reared until adult-

hood on the following different substrates: (i) 30 eggs on an

artificial diet prepared according to Stampini and Locatelli

(2007); (ii) 30 eggs on dried Moringa oleifera leaves (hereafter

named moringa) and (iii) 30 eggs on Vicia faba beans (hereaf-

ter fava bean). The remaining 30 eggs were directly analysed

in order to provide information on the native microbiotas asso-

ciated with the laboratory-reared population. Newborn adults

of two distinct wild populations collected in Italy and living,

respectively, on dried Capsicum annuum (chili pepper; hereaf-

ter named chili) and on noodles of white-black buckwheat

flour (named pizzoccheri) were processed for DNA extraction

to better investigate the variability of the bacterial communities

associated with the IMM. In order to avoid possible shifts in

the composition and structure of the insect-associated micro-

biotas due to a seasonal variability (Jia et al., 2013), all of the

analysed moth specimens were collected during the first twen-

ty days of May 2014.

DNA extraction

A total of five newborn adults (three females and two males)

from each population were surface sterilized and DNA extrac-

tion was performed on the whole body (Montagna et al.,

2015b). In order to characterize their internal and external

microbiotas, the eggs were not surface sterilized because the

outer shell of an insect’s egg, called the chorion, is the first

meal of the newborn larvae. The DNA was extracted from each

sample using the DNeasy Blood and Tissue Kit (Qiagen) fol-

lowing the manufacturer’s instructions. The concentration and

purity of the extracted DNA were determined by a NanoDrop

ND-1000 spectrophotometer (NanoDrop Technologies, Wil-

mington, DE). In order to characterize the bacteria associated

with the five substrates used as food sources, DNA was

extracted using the DNeasy Plant Kit (Qiagen) starting from

0.5 g of food after homogenisation with liquid nitrogen of the

whole amount of substrate on which the IMMs were developed.

Pyrosequencing

The bacterial communities associated with the insects and

food samples were characterized by targeting the V1-V3 vari-

able regions of the 16S rRNA gene using universal primers for

bacteria as reported in a previous studies (Mazza et al., 2014;

Montagna et al., 2015a,b). A commercial service performed

the PCR reactions and the 454 pyrosequencing by Roche 454

GS FLX Titanium (MR DNA, Shallowater, TX). The 16S rRNA

gene sequences obtained by the 454 pyrosequencing assays

were deposited in the European Nucleotide Archive (Acces-

sion No. PRJEB14361), mapping file is provided in Table S1.

Using a dedicated filtering script working under the QIIME

platform (Caporaso et al., 2010), the obtained raw 16S rRNA

V1-V3 gene sequences were trimmed to remove adaptors,

low quality base calls (<30 Phred score) and short-sized

sequences (retained sequences between 350 and 500 bp).

Chimeras were removed with Chimeraslayer, and the high

quality non-chimeric sequences were clustered into operation-

al taxonomic units (OTUs), based on a sequence identity

threshold of 97%, using Uclust (Edgar 2010). PyNast (Capor-

aso et al., 2010) was used to align a representative sequence

from each OTU with Greengenes (http://greengenes.lbl.gov/);

these representative sequences were then taxonomically clas-

sified by BLASTn-based comparisons to the Greengenes and

Silva databases. After a first analysis, the OTUs identified as

plant chloroplast and mitochondria were removed using an ad

hoc perl script. This output was used for a second run of

QIIME analyses.

Diversity and statistical analyses

The resulting set of OTUs was used as input for the diversity

analyses carried out with different R packages (R Project

3.0.2; http://cran.r-project.org/).

The diversity indices and the following analysis (exceptions

are specified) were estimated using the R package vegan

(Dixon, 2003). The Shannon H index (Shannon, 1948), Pie-

lou’s evenness (Pielou, 1975) and the total species richness

index Chao 1 (Chao and Lee, 1992; Chao, 1984) were esti-

mated. The bacterial communities associated with the moth

samples were ordinated, according to OTU composition simi-

larity, using the distance-based non-metric multi-dimensional

scaling (NMDS; Kruskal, 1964) with the Chao probabilistic dis-

tance (Chao et al., 2005) as described in a previous work

(Montagna et al., 2015a,b). Correlations between the diet

typologies (i.e., artificial diet, moringa, fava bean, chili and piz-

zoccheri), the origin of the samples (i.e., lab reared specimens

versus wild populations) and the specimen’s gender with the

insect-associated bacterial communities were tested by fitting

the NMDS scores using the envfit function. The significance of

the fitted factors was assessed by permutations (9999) of the

dissimilarity OTUs matrix. The same analyses were also per-

formed on the pairwise UniFrac distance matrix (rarefaction

on the minimum samples size) calculated using the

taxonomy-independent weighted UniFrac metric (Lozupone

et al., 2007), which accounts for similarities in the phylogenetic

structure of the communities associated to each moth sam-

ples. The best number of clusters identified by the NMDS

analyses was evaluated using the Calinski-Harabasz criterion
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(Calinski and Harabasz, 1974), and their consistency was
evaluated using silhouette scores (Rousseeuw, 1987).

The differences among the bacterial communities associat-

ed with the IMMs fed with different substrates were estimated
by a nonparametric one-way analysis of similarity (ANOSIM;
Clarke, 1993). Shifts in the bacterial community structure
associated with the three groups of moths reared in laboratory

on different substrates (i.e., artificial diet, moringa leaves and
fava beans) were estimated with the R package betapart
(Baselga and Orme, 2012) using Simpson’s dissimilarity index

as described in Montagna et al. (2015b).

In order to evaluate the bacterial OTUs associated with the
eggs and those retained until adulthood, as well as those
shared between the insects and their food, a co-occurrence

(i.e., eggs-IMM and IMM-food microbiotas) table was
obtained. The OTU table was filtered using the following crite-
rion: the co-occurrence was assigned when a specific
bacterial OTU of the eggs or food microbiotas was present in

the microbiota of at least three insects feeding on the same
resources. Venn diagrams, acquired with the R package
gplots, provide a visualisation of the bacteria OTUs numbers,

establishing the IMM bacterial core and the bacterial commu-
nity shared among the adult insects, its food substrates and
the eggs. In the Venn diagrams, the presence of a bacterial

OTU is assigned to the group of insects feeding on the same
resources when: (i) the OTU is reported for at least one speci-
men of the group and (ii) the OTU is reported for at least three
specimens of the group, as for the co-occurrence table.

Predictive functional profiling

The functional profiles of the bacterial communities were

investigated using PICRUSt (Langille et al., 2013). The OTUs
were closed-reference picked against Greengenes (GG ver-
sion 13.5) using QIIME v 1.9 according to the online protocol.

The bacterial metagenome was predicted for the bacterial
communities associated with the IMM adults.

The table with the predicted L3-functions counts per-
samples, according to the Cluster of Orthologous Groups

(Tatusov et al., 1997) and identifiers adopted by KEGG Orthol-
ogy (Kanehisa et al., 2012), was cleaned up by removing the
categories not related to the bacterial physiology/metabolism

and the null categories. The nearest sequenced taxon index
median value for the PICRUSt predictions was 0.08
(SD 5 0.04), reflecting good availability for the reference
genomes on which the metagenome function predictions were

based. The overall differences in the amount of counts were
estimated by the non-parametric Kruskal–Wallis test (Kruskal
and Wallis, 1952) after assessing the homogeneity of the vari-

ance among the groups through the Levene test (Levene,
1960). If the P-value of Kruskal–Wallis test resulted in a signifi-
cance level that was less than a 0.05, then a Mann–Whitney–

Wilcoxon test with a Hochberg correction (Mann and Whitney,
1947) was applied to compare the pairs of groups. These tests
were performed using the lawstat-package (Hui et al., 2008) in
the R software, and the results are visualized by a table.
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Fig. S1. Venn diagram pairs showing the bacterial OTUs

(at 97% similarity) shared by eggs and moth groups. The

presence of a bacterial OTU is assigned to the group of

insects feeding on the same resources when it is reported

for at least three specimens of the group.
Fig. S2. Venn diagrams showing the bacterial OTUs (at

97% similarity) shared by eggs and the three groups of

adult moths from the laboratory population. The presence

of a bacterial OTU is assigned to the group of insects feed-

ing on the same resources when it is reported for at least

one specimen of the group (A) and at least in three speci-

mens of the group (B).
Fig. S3. Venn diagrams showing the bacterial OTUs (at

97% similarity) shared by the five groups of adult IMMs.

The presence of a bacterial OTU is assigned to the group

of insects feeding on the same resources when it is

reported for at least three specimens of the group (A) and

one specimen of the group (B).
Table S1. Mapping file.
Table S2. OTUs abundance. OTUs identification has been

performed at Phylum level.

Table S3. OTUs abundance. OTUs identification has been

performed at Family level.
Table S4. OTUs abundance. OTUs identification has been

performed at Genus level.
Table S5. Predicted functional profiles infereed on the base

of the bacterial 16S rRNA, table with the abundance of the

predicted L3-functions counts per-samples.

Table S6. P-values obtained with Kruskal–Wallis test for

the predicted L3 functional potential.
Table S7. P-values obtained by pairwise Wilcoxon–Mann–

Withney test for the predicted L3 functional potential.
Table S8. Macronutrient composition of different substrates.
Table S9. Heat map of the IMM bacterial OTUs shared with

their diet and with the eggs from laboratory population. Blue

squares indicate OTU co-occurrence, while the black

squares indicate no co-occurrence of the bacterial OTU.

The OTU presence is assigned to the corresponding group

of Plodia when it has been recovered in at least one speci-

mens belonging to the group.
Table S10. Heat map of the IMM bacterial OTUs shared

with their diet and with the eggs from laboratory population.

Yellow squares indicate OTU co-occurrence, while the black

squares indicate no co-occurrence of the bacterial OTU.

The OTU presence is assigned to the corresponding group

of Plodia when it has been recovered in at least two speci-

mens belonging to the group.
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