56 research outputs found

    Tracing the Evolution of Hydrogen in the Martian Crust Through Laboratory Studies of Apatite

    Get PDF
    Introduction: Northwest Africa (NWA) 7034 and its pairings represent a regolith breccia of basaltic bulk composition, the finegrained matrix of which bears a strong resemblance to the major and trace element composition estimated for the ancient southern highlands crust on Mars. Therefore, NWA 7034 may represent a key sample for constraining the composition of the Martian crust, particularly the ancient highlands. Here we seek to constrain the hydrogen isotopic composition of the Martian crust using apatite [Ca5 (PO4)3(Cl,F,OH)]. Apatites across all lithologic domains in NWA 7034 have been affected by a Pb-loss event at ~1.5 Ga before present and so they are unlikely to have retained magmatic volatile composition and are more likely to have equilibrated with fluids within the Martian crust that may or may not have exchanged with the Martian atmosphere

    Multiple reservoirs of volatiles in the Moon revealed by the isotopic composition of chlorine in lunar basalts

    Get PDF
    The isotopes of chlorine (37Cl and 35Cl) are highly fractionated in lunar samples compared to most other Solar System materials. Recently, the chlorine isotope signatures of lunar rocks have been attributed to large-scale degassing processes that occurred during the existence of a magma ocean. In this study we investigated how well a suite of lunar basalts, most of which have not previously been analyzed, conform to previous models. The Cl isotope compositions (δ37Cl (‰) = [(37Cl/35Clsample/37Cl/35ClSMOC)-1]×1000, where SMOC refers to standard mean ocean chloride) recorded range from ∼+7 to +14 ‰ (Apollo 15), +10 to +19 ‰ (Apollo 12), +9 to +15 ‰ (70017), +4 to +8 ‰ (MIL 05035), and +15 to +22 ‰ (Kalahari 009). The Cl isotopic data from the present study support the mixing trends previously reported by Boyce et al., 2015, Barnes et al., 2016, as the Cl isotopic composition of apatites are positively correlated with bulk-rock incompatible trace element abundances in the low-Ti basalts, inclusive of low-Ti and KREEP basalts. This trend has been interpreted as evidence that incompatible trace elements, including Cl, were concentrated in the urKREEP residual liquid of the lunar magma ocean, rather than the mantle cumulates, and that urKREEP Cl had a highly fractionated isotopic composition. The source regions for the basalts were thus created by variable mixing between the mantle (Cl-poor and relatively unfractionated) and urKREEP. The high-Ti basalts show much more variability in measured Cl isotope ratios and scatter around the trend formed by the low-Ti basalts. Most of the data for lunar meteorites also fits the mixing of volatiles in their sources, but Kalahari 009, which is highly depleted in incompatible trace elements, contains apatites with heavily fractionated Cl isotopic compositions. Given that Kalahari 009 is one of the oldest lunar basalts and ought to have been derived from very early-formed mantle cumulates, a heavy Cl isotopic signature is likely not related to its mantle source, but more likely to magmatic or secondary alteration processes, perhaps via impact-driven vapor metasomatism of the lunar crust

    Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Get PDF
    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer–CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall–winter of 2007–2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH

    The origin of water in the primitive Moon as revealed by the lunar highlands samples

    Get PDF
    The recent discoveries of hydrogen (H) bearing species on the lunar surface and in samples derived from the lunar interior have necessitated a paradigm shift in our understanding of the water inventory of the Moon, which was previously considered to be a ‘bone-dry’ planetary body. Most sample-based studies have focused on assessing the water contents of the younger mare basalts and pyroclastic glasses, which are partial-melting products of the lunar mantle. In contrast, little attention has been paid to the inventory and source(s) of water in the lunar highlands rocks which are some of the oldest and most pristine materials available for laboratory investigations, and that have the potential to reveal the original history of water in the Earth–Moon system. Here, we report in-situ measurements of hydroxyl (OH) content and H isotopic composition of the mineral apatite from four lunar highlands samples (two norites, a troctolite, and a granite clast) collected during the Apollo missions. Apart from troctolite in which the measured OH contents in apatite are close to our analytical detection limit and its H isotopic composition appears to be severely compromised by secondary processes, we have measured up to ~2200 ppm OH in the granite clast with a weighted average δD of ~-105±130‰, and up to ~3400 ppm OH in the two norites (77215 and 78235) with weighted average δD values of -281±49‰ and -27±98‰, respectively. The apatites in the granite clast and the norites are characterised by higher OH contents than have been reported so far for highlands samples, and have H isotopic compositions similar to those of terrestrial materials and some carbonaceous chondrites, providing one of the strongest pieces of evidence yet for a common origin for water in the Earth–Moon system. In addition, the presence of water, of terrestrial affinity, in some samples of the earliest-formed lunar crust suggests that either primordial terrestrial water survived the aftermath of the putative impact-origin of the Moon or water was added to the Earth–Moon system by a common source immediately after the accretion of the Moon

    H and Cl isotope characteristics of indigenous and late hydrothermal fluids on the differentiated asteroidal parent body of Grave Nunataks 06128

    Get PDF
    The paired achondrites Graves Nunataks (GRA) 06128 and 06129 are samples of an asteroid that underwent partial melting within a few million years after the start of Solar System formation. In order to better constrain the origin and processing of volatiles in the early Solar System, we have investigated the abundance of H, F and Cl and the isotopic composition of H and Cl in phosphates in GRA 06128 using secondary ion mass spectrometry. Indigenous H in GRA 06128, as recorded in magmatic merrillite, is characterised by an average δD of ca. -152 ± 330‰, which is broadly similar to estimates of the H isotope composition of indigenous H in other differentiated asteroidal and planetary bodies such as Mars, the Moon and the angrite and eucrite meteorite parent bodies. The merrillite data thus suggest that early accretion of locally-derived volatiles was widespread for the bodies currently populating the asteroid belt. Apatite formed at the expense of merrillite around 100 million years after the differentiation of the GRA 06128/9 parent body, during hydrothermal alteration, which was probably triggered by an impact event. Apatite in GRA 06128 contains 5.4-5.7 wt.% Cl, 0.6-0.8 wt.% F, and ~20 to 60 ppm H2O, which is similar to the H2O abundance in merrillite from which apatite formed. The apatite δD values range between around +100‰ and +2000‰ and are inversely correlated with apatite H2O contents. The Cl isotope composition of apatite appears to be homogeneous across various grains, with an average δ37 Cl value of 3.2 ± 0.7‰. A possible scenario to account for the apatite chemical and isotopic characteristics involves interaction of GRA 06128/9 with fumarole-like fluids derived from D- and HCl-rich ices delivered to the GRA 06128/9 parent-body by an ice-rich impactor

    Methane emissions from underground gas storage in California

    Get PDF
    Accurate and timely detection, quantification, and attribution of methane emissions from Underground Gas Storage (UGS) facilities is essential for improving confidence in greenhouse gas inventories, enabling emission mitigation by facility operators, and supporting efforts to assess facility integrity and safety. We conducted multiple airborne surveys of the 12 active UGS facilities in California between January 2016 and November 2017 using advanced remote sensing and in situ observations of near-surface atmospheric methane (CH₄). These measurements where combined with wind data to derive spatially and temporally resolved methane emission estimates for California UGS facilities and key components with spatial resolutions as small as 1–3 m and revisit intervals ranging from minutes to months. The study spanned normal operations, malfunctions, and maintenance activity from multiple facilities including the active phase of the Aliso Canyon blowout incident in 2016 and subsequent return to injection operations in summer 2017. We estimate that the net annual methane emissions from the UGS sector in California averaged between 11.0 ± 3.8 GgCH₄ yr⁻¹ (remote sensing) and 12.3 ± 3.8 GgCH₄ yr⁻¹ (in situ). Net annual methane emissions for the 7 facilities that reported emissions in 2016 were estimated between 9.0 ± 3.2 GgCH₄ yr⁻¹ (remote sensing) and 9.5 ± 3.2 GgCH₄ yr⁻¹ (in situ), in both cases around 5 times higher than reported. The majority of methane emissions from UGS facilities in this study are likely dominated by anomalous activity: higher than expected compressor loss and leaking bypass isolation valves. Significant variability was observed at different time-scales: daily compressor duty-cycles and infrequent but large emissions from compressor station blow-downs. This observed variability made comparison of remote sensing and in situ observations challenging given measurements were derived largely at different times, however, improved agreement occurred when comparing simultaneous measurements. Temporal variability in emissions remains one of the most challenging aspects of UGS emissions quantification, underscoring the need for more systematic and persistent methane monitoring

    California’s methane super-emitters

    Get PDF
    Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide. Unique opportunities for mitigation are presented by point-source emitters—surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523–0.725), equivalent to 34–46 per cent of the state’s methane inventory for 2016. Methane ‘super-emitter’ activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions—consistent with a study of the US Four Corners region that had a different sectoral mix. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California’s infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity
    corecore