46 research outputs found

    Search for CP violation in D0 and D+ decays

    Get PDF
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    A Study of D0 --> K0(S) K0(S) X Decay Channels

    Full text link
    Using data from the FOCUS experiment (FNAL-E831), we report on the decay of D0D^0 mesons into final states containing more than one KS0K^0_S. We present evidence for two Cabibbo favored decay modes, D0KS0KS0Kπ+D^0\to K^0_SK^0_S K^- \pi^+ and D0KS0KS0K+πD^0\to K^0_SK^0_S K^+ \pi^-, and measure their combined branching fraction relative to D0Kˉ0π+πD^0\to \bar{K} ^0\pi^+\pi^- to be Γ(D0KS0KS0K±π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^{\pm}\pi^{\mp})}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0106 ±\pm 0.0019 ±\pm 0.0010. Further, we report new measurements of Γ(D0KS0KS0KS0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^0_S)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0179 ±\pm 0.0027 ±\pm 0.0026, Γ(D0K0Kˉ0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0\bar{K} ^0)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0144 ±\pm 0.0032 ±\pm 0.0016, and Γ(D0KS0KS0π+π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_S\pi^+\pi^-)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0208 ±\pm 0.0035 ±\pm 0.0021 where the first error is statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte

    Measurement of the D+ and Ds+ decays into K+K-K+

    Get PDF
    We present the first clear observation of the doubly Cabibbo suppressed decay D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay Ds+ --> K-K+K+. These signals have been obtained by analyzing the high statistics sample of photoproduced charm particles of the FOCUS(E831) experiment at Fermilab. We measure the following relative branching ratios: Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/- 0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) = (8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3

    Measurement of the Ωc0\Omega_c^0 Lifetime

    Full text link
    The FOCUS experiment(FNAL-E831) has used two channels, Ωπ+\Omega^- \pi^+ and ΞKπ+π+\Xi^-K^- \pi^+ \pi^+,to measure the lifetime of the Ωc0\Omega_c^0 charmed baryon. From a sample of 64±1464 \pm 14 signal events at a mass of 2.698 GeV/c2c^2, we measure an Ωc0\Omega_c^0 lifetime of 72±1172 \pm 11 (stat.) ±11\pm 11 (sys.) fs, substantially improving upon the current world average.Comment: 12 pages and 5 figure

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    Hypothesis Validation of Far Wall Brightness in Carotid Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level Set Segmentation and RegistrationMulti-Modality Atherosclerosis Imaging and Diagnosis

    No full text
    Intima-Media Thickness (IMT) is now being considered as an indicator of atherosclerosis. Our group has developed several feature-based IMT measurement algorithms such as CALEX (a class of patented AtheroEdge™ Systems from Global Biomedical Technologies, Inc., CA, USA). These methods are based on the hypothesis that the highest pixel intensities are in the far wall of the Common Carotid Artery (CCA) or the Internal Carotid Artery (ICA). In this work, we verify that this hypothesis holds true for B-mode longitudinal ultrasound images of the carotid wall. This patented methodology consists of generating the composite image (arithmetic sum of images) from the database by first registering the carotid image frames with respect to a nearly straight carotid artery frame from the same database using (a) B-spline based nonrigid registration and (b) affine registration. Prior to registration, we segment the carotid artery lumen using a level set based algorithm followed by morphological image processing. The binary lumen images are registered and the transformations are applied to the original grayscale CCA images. We evaluated our technique using a database of 200 common carotid images of normal and pathologic carotids. The composite image presented the highest intensity distribution in the far wall of the CCA/ICA, validating our hypothesis. We have also demonstrated the accuracy and improvement in IMT segmentation result with our CALEX 3.0 system. The CALEX system, when run on newly acquired ultrasound images, shows the IMT error of about 30 μm. Thus, we have shown that the CALEX algorithm is able to exploit the far wall brightness for accurate IMT measurement

    Dermatomal laser-evoked potentials: a diagnostic approach to the dorsal root. Norm data in healthy volunteers and changes in patients with radiculopathy

    No full text
    We conducted a cross-sectional study of 40 radiculopathy patients in comparison with norm data from healthy subjects using a new electrophysiological method. Early manifestations of dorsal root impairment escape objective diagnosis by conventional somatosensory-evoked potentials due to the overlapping innervation of the affected dermatome by thickly myelinated mechanoreceptive afferents projecting to adjacent intact roots. Evidence suggested less intersegmental overlap for thermonociceptive afferents rendering laser-evoked potentials (LEP) sensitive to monosegmental dorsal root damage. Therefore we used this new method to study acute manifestations of monosegmental dorsal root pathology. Dorsal root function was tested in 12 healthy subjects and 40 sciatica patients by intraindividual interside comparison. Mechanosensibility and thermosensibility were clinically investigated. LEP were induced by moderately painful laser stimuli. The LEP were evaluated by amplitude and latency of the averaged electroencephalogram. Normal interside differences of LEP for amplitude were ±22% (lower limb) and ±35% (upper limb) and ±15 to ±16% for latency. Twenty-six patients (65%) showed significant LEP changes, mainly amplitude decreases. Six of these patients exhibited latency prolongations. Clinical testing yielded more frequent pathological results for pain compared to mechanosensibility. The study confirmed our preliminary evidence of LEP sensitivity to objectively document dorsal root impairment in patients suffering from acute monosegmental radiculopathy. This result opens the perspective of electrophysiologically differentiating the presence or absence of dorsal root pathology in patients with similar clinical symptoms but possibly different prognoses, which require different therapies
    corecore