56 research outputs found

    The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application

    Full text link
    Scenarios of future energy systems attribute an important role to Carbon Capture, Transport, and Storage (CCTS) in achieving emission reductions. Using captured CO2 for enhanced oil recovery (CO2-EOR) can improve the economics of the technology. This paper examines the potential for CO2-EOR in the North Sea region. UK oil fields are found to account for 47% of the estimated additional recovery potential of 3739 Mbbl (1234 MtCO2 of storage potential). Danish and Norwegian fields add 28% and 25%, respectively. Based on a comprehensive dataset, the paper develops a unique techno-economic market equilibrium model of CO2 supply from emission sources and CO2 demand from CO2-EOR to assess implications for a future CCTS infrastructure. A detailed representation of decreasing demand for fresh CO2 for CO2-EOR operation is accomplished via an exponential storage cost function. In all scenarios of varying CO2 and crude oil price paths the assumed CO2-EOR potential is fully exploited. CO2-EOR does add value to CCTS operations but the potential is very limited and does not automatically induce long term CCTS activity. If CO2 prices stay low, little further use of CCTS can be expected after 2035

    Process Simulation of Impurity Impacts on CO2 Fluids Flowing in Pipelines

    Get PDF
    YesCaptured carbon dioxide flowing in pipelines is impure. The impurities contained in the carbon dioxide fluid impact on the properties of the fluid. The impact of each impurity has not been adequately studied and fully understood. In this study, binary mixtures containing carbon dioxide and one impurity, at the maximum permitted concentration, flowing in pipelines are studied to understand their impact on pipeline performance. A hypothetical 70 km uninsulated pipeline is assumed and simulated using Aspen HYSYS (v.10) and gPROMS (v.5.1.1). The mass flow rate is 2,200,600 kg/h; the internal and external diameters are 0.711 m and 0.785 m. 15 MPa and 9 MPa were assumed as inlet and minimum pressures and 33 oC as the inlet temperature, to ensure that the fluid remain in the dense (subcritical or supercritical) phase. Each binary fluid is studied at the maximum allowable concentration and deviations from pure carbon dioxide at the same conditions is determined. These deviations were graded to rank the impurities in order of the degree of impact on each parameter. All impurities had at least one negative impact on carbon dioxide fluid flow. Nitrogen with the highest concentration (10-mol %) had the worst impact on pressure loss (in horizontal pipeline), density, and critical pressure. Hydrogen sulphide (with 1.5-mol %) had the least impact, hardly changing the thermodynamic properties of pure carbon dioxide

    Techno-economic performance and spatial footprint of infrastructure configurations for large scale CO2 capture in industrial zones: A case study for the Rotterdam Botlek area (part A)

    Get PDF
    This study developed a method to assess the techno-economic performance and spatial footprint of CO2 capture infrastructure configurations in industrial zones. The method has been successfully applied to a cluster of sixteen industrial plants in the Dutch industrial Botlek area (7.1 MtCO2/y) for 2020–2030. The configurations differ inter alia regarding capture technology (post-, pre-, oxyfuel combustion) and location of capture components (centralized vs. plant site). Results indicate that oxyfuel combustion with centralized oxygen production and decentralized CO2 compression is the most cost effective and realistic configuration when applying CO2 capture to all industrial plants (61€/tCO2; 5.8 MtCO2/y avoided), mainly due to relatively low energy costs compared to post- and pre-combustion. However, oxyfuel combustion at plant level is economically preferable when capturing CO2 from only the three largest industrial plants. For post-combustion, a separated absorber-stripper configuration (73€/tCO2; 7.1 MtCO2/y avoided) is preferable from a cost perspective, due to economic scale effects of capture equipment. The optimal pre-combustion configuration shows a slightly less favorable performance (81€/tCO2; 4.4 MtCO2/y avoided). Whereas many industrial plants have insufficient space available for capture equipment, centralized/hybrid configurations show no insurmountable space issues. The deployment of the most favorable configurations is addressed in Part B
    corecore