257 research outputs found

    Fibroblast behavior after titanium surfaces exposure.

    Get PDF
    Background: The main requirements for a good material are its ability to promote attraction and adhesion of bone precursor cells and their proliferation and differentiation. Different biocompatible materials are currently employed as scaffold. Among these, titanium is considered a gold standard because of its biocompatibility and good corrosion resistance. Materials and Methods: The aim of this work was to compare two different AoN titanium layers (GR4 and GR5) to investigate which one had a greater osteoconductive power using human fibroblasts (HFb) culture at two different time-points. The expression levels of some adhesion and traction-resistance related genes (COL11A1, COL2A1, COL9A1, DSP, ELN, HAS1, and TFRC) were analyzed using real time reverse transcription-polymerase chain reaction. Results: After 7 days of treatment with TiA 4GR, the only two up-regulated genes were COL2A1 and DSP. After 15 days of treatment, none of genes over expressed. Conclusion: Our preliminary results suggest that neither AoN 4GR nor AoN 5GR are able to promote the production of protein involved in cell\u2013cell and cell\u2013matrix adhesion and in stress-resistance, required for a good outcome in dental implantolog

    Titanium alloys (AoN) and their involvement in osseointegration.

    Get PDF
    Background: Osseointegration is essential for a long-term successful and inflammation-free dental implant. Such a result depends on osteoblastic cells growth and differentiation at the tissue-implant interface. The aim of this study was to compare two different AoN titanium layers (GR4 and GR5) to investigate which one had a greater osteoconductive power using human osteoblasts (HOb) culture at two different time-points. Materials and Methods: The expression levels of some bone-related (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analyzed using real time reverse transcription-polymerase chain reaction (real time RT-PCR). Results: Real-time RT-PCR data showed that after 3 days of treatment with TiA4GR, the genes up-regulated were COL3A1, ALPL, SPP1, and RUNX2. Moreover, no difference in gene expression was noticed 4 days later. On the other hand, the genes that overexpressed after 3 days of treatment with AoN5GR were ALPL, SPP1, and RUNX2. In both cases, the expression of COL1A1 and SPARC was negatively regulated. Conclusion: Our data showed that both titanium surfaces led to osteoblasts recruitment, maturation, and differentiation, thus promoting osseointegration at the tissue-implant interface

    KBG syndrome

    Get PDF
    KBG syndrome is a rare condition characterised by a typical facial dysmorphism, macrodontia of the upper central incisors, skeletal (mainly costovertebral) anomalies and developmental delay. To date, KBG syndrome has been reported in 45 patients. Clinical features observed in more than half of patients that may support the diagnosis are short stature, electroencephalogram (EEG) anomalies (with or without seizures) and abnormal hair implantation. Cutaneous syndactyly, webbed short neck, cryptorchidism, hearing loss, palatal defects, strabismus and congenital heart defects are less common findings. Autosomal dominant transmission has been observed in some families, and it is predominantly the mother, often showing a milder clinical picture, that transmits the disease. The diagnosis is currently based solely on clinical findings as the aetiology is unknown. The final diagnosis is generally achieved after the eruption of upper permanent central incisors at 7–8 years of age when the management of possible congenital anomalies should have been already planned. A full developmental assessment should be done at diagnosis and, if delays are noted, an infant stimulation program should be initiated. Subsequent management and follow-up should include an EEG, complete orthodontic evaluation, skeletal investigation with particular regard to spine curvatures and limb asymmetry, hearing testing and ophthalmologic assessment

    Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia

    Get PDF
    BRCA1 plays a pivotal role in the repair of DNA damage, especially following chemotherapy and ionising radiation. We were interested in the regulation of BRCA1 expression in acute myeloid leukaemia (AML), in particular in therapy-related forms (t-AML). Using real-time PCR and Western blot, we found that BRCA1 mRNA was expressed at barely detectable levels by normal peripheral blood granulocytes, monocytes and lymphocytes, whereas control BM-mononuclear cells and selected CD34+ progenitor cells displayed significantly higher BRCA1 expression (P=0.0003). Acute myeloid leukaemia samples showed heterogeneous BRCA1 mRNA levels, which were lower than those of normal bone marrows (P=0.0001). We found a high frequency of hypermethylation of the BRCA1 promoter region in AML (51/133 samples, 38%), in particular in patients with karyotypic aberrations (P=0.026), and in t-AML, as compared to de novo AML (76 vs 31%, P=0.0002). Examining eight primary tumour samples from hypermethylated t-AML patients, BRCA1 was hypermethylated in three of four breast cancer samples, whereas it was unmethylated in the other four tumours. BRCA1 hypermethylation correlated to reduced BRCA1 mRNA (P=0.0004), and to increased DNA methyltransferase DNMT3A (P=0.003) expression. Our data show that reduced BRCA1 expression owing to promoter hypermethylation is frequent in t-AML and that this could contribute to secondary leukaemogenesis

    PTPN11 mutations are not responsible for the Cardiofaciocutaneous (CFC) syndrome

    Get PDF
    Cardiofaciocutaneous (CFC) syndrome is a multiple congenital anomalies/mental retardation syndrome characterized by congenital heart defects, characteristic facial appearance, short stature, ectodermal abnormalities and mental retardation. It was described in 1986, and to date is of unknown genetic etiology. All reported cases are sporadic, born to non-consanguineous parents and have apparently normal chromosomes. Noonan and Costello syndromes remain its main differential diagnosis. the recent finding of PTPN11 missense mutations in 45-50% of the Noonan patients studied with penetrance of almost 100% and the fact that in animals mutations of this gene cause defects of semilunar valvulogenesis, made PTPN11 mutation screening in CFC patients a matter of interest. We sequenced the entire coding region of the PTPN11 gene in ten well-characterised CFC patients and found no base changes. We also studied PTPN11 cDNA in our patients and demonstrated that there are no interstitial deletions either. the genetic cause of CFC syndrome remains unknown, and PTPN11 can be reasonably excluded as a candidate gene for the CFC syndrome, which we regard as molecular evidence that CFC and Noonan syndromes are distinct genetic entities.Univ Sacred Heart, Ist Genet Med, I-00168 Rome, ItalyUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilWeb of Scienc

    Development, behaviour and sensory processing in Marshall-Smith syndrome and Malan syndrome:phenotype comparison in two related syndromes

    Get PDF
    Background Ultrarare Marshall-Smith and Malan syndromes, caused by changes of the gene nuclear factor I X (NFIX), are characterised by intellectual disability (ID) and behavioural problems, although questions remain. Here, development and behaviour are studied and compared in a cross-sectional study, and results are presented with genetic findings. Methods Behavioural phenotypes are compared of eight individuals with Marshall-Smith syndrome (three male individuals) and seven with Malan syndrome (four male individuals). Long-term follow-up assessment of cognition and adaptive behaviour was possible in three individuals with Marshall-Smith syndrome. Results Marshall-Smith syndrome individuals have more severe ID, less adaptive behaviour, more impaired speech and less reciprocal interaction compared with individuals with Malan syndrome. Sensory processing difficulties occur in both syndromes. Follow-up measurement of cognition and adaptive behaviour in Marshall-Smith syndrome shows different individual learning curves over time. Conclusions Results show significant between and within syndrome variability. DifferentNFIXvariants underlie distinct clinical phenotypes leading to separate entities. Cognitive, adaptive and sensory impairments are common in both syndromes and increase the risk of challenging behaviour. This study highlights the value of considering behaviour within developmental and environmental context. To improve quality of life, adaptations to environment and treatment are suggested to create a better person-environment fit

    Mechanisms of ring chromosome formation, ring instability and clinical consequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients.</p> <p>Methods</p> <p>Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent <it>in situ </it>Hybridization).</p> <p>Results</p> <p>The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV).</p> <p>Conclusions</p> <p>We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).</p

    Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72

    Get PDF
    A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for similar to 40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis-frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis-frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6-7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7-2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for similar to 60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis

    GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function : a report from the COGENT consortium

    Get PDF
    CORRIGENDUM Molecular Psychiatry (2017) 22, 1651–1652 http://www.nature.com/articles/mp2017197.pdfThe complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (similar to 8M single-nucleotide polymorphisms (SNP) with minor allele frequency >= 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (PPeer reviewe
    corecore