343 research outputs found

    Time-space evolution and volcanological features of the Late Miocene-Quaternary Calimani-Gurghiu-Harghita Volcanic Range, East Carpathians, Romania. A Review.

    Get PDF
    The Carpathian-Pannonian Region (CPR) hosts one of the major Cainozoic volcanic provinces of Europe extending in space over 6 eastern European countries.The lithospheric evolution of this large area governed by large-scale asthenospheric processes is recorded by products of volcanic activity occurred during a time interval of more than 21 million years. According to their surface occurrence areas, ages and composition the Neogene volcanics of CPR were systematized in three main groups: 1) mostly explosive products of felsic magmas generated at the beginning of volcanism in the whole CPR and in their particular occurrence areas (21-12 Ma) developed in the actual intra-Carpathian Pannonian Basin, 2) mostly intermediate calc-alkaline rocks emplaced in both the intra-Carpathian areas and along the arcuate Carpathian fold-and-thrust belt, and 3) Na- and K- alkaline and ultra-alkaline products clustered in a number of monogenetic volcanic fields across the whole intra-Carpathian realm developed in the final stages of volcanic activity of the CPR as a whole and of their particular occurrence areas. The ca. 160 km long Călimani-Gurghiu-Harghita volcanic range (CGH) developed as part of the intermediate calc-alkaline volcanism closely related in space with the fold-and-thrust belt of the Carpathians, representing the south-eastern segment of the CPR. Although its map view and general petrochemical and volcanological characteristics are quite similar with those of other segments of the orogene belt- tied calc-alkaline volcanic segments, at a closer look CGH displays a number of unique features. The time-space evolution of CGH is particular not only in that it is the youngest (10.5 to < 0.05 Ma) dominantly calc-alkaline segment in CPR but also it shows a transient character. Unlike other segments along which volcanism occurred simultaneously forming true subduction-related 400 to 800 km long volcanic fronts which were stable in time for millions of year, in CGH volcanic activity migrated continuously along the range from NW to SE. So, during any given 1 Ma time interval active volcanism was restricted to very limited areas and to just a few active volcanic centers. The along-range shift of volcanic foci was concurrent with progressively lower volumes of magma erupted and decreasing magma output rates. As a result, gradually lower-volume and less complex volcanic edifices were built up. Moreover, at the range-ending and youngest South Harghita sub-segment, magma compositions gradually changed from normal calc-alkaline to high-K calc-alkaline and shoshonitic, and adakitic features emerged at the end of volcanic activity, after a time gap of 0.5 Ma. This marks a major geodynamic event in the development of the East Carpathians themselves. During the transient volcanism of CGH, edifices of varying volume and complexity were built up forming a row of tightly- packed adjoining stratovolcanoes/composite volcanoes whose peripheral volcaniclastic aprons complexly juxtaposed, overlapped and merged with each other. The largest ones (Călimani caldera, and Fâncel-Lăpuşna) developed until caldera stage. Some of them (Rusca-Tihu in the Călimani Mts., Vârghiş in the North Harghita Mts.) became unstable during their growth and collapsed, generating widespread large-volume debris avalanche deposits. Edifice instability was solved by volcano-basement interaction processes, such as volcano spreading, at some large-volume volcanoes (in particular those in the Gurghiu Mts.). Volcano typology changed at the smaller-volume constructs toward the southeastern terminus of the range in the South Harghita Mts. from typical large stratovolcanoes to smaller composite volcanoes, dome clusters and isolated domes and simpler internal structures. As a whole, CGH displays an extremely particular evolutionary pattern strongly suggesting a transient character and decreasing to extinguishing volcanic activity along its length from NW to SE

    Recurrent vulvar carcinoma: complex surgical treatment via perineal excision and reconstruction with musculocutaneous flap

    Get PDF
    Vulvar cancer is a malignant disease having a low frequency and with well-established surgical and oncological treatments based on the stage of the disease. The most important therapeutic problem encountered is represented by cases of perineal local regional recurrence, which are common in patients with large primary tumors and can occur even if the margins of the resection had no tumoral invasion. We present a case study of a 64-year-old patient diagnosed one year ago with squamous vulvar carcinoma (G3) for which a vulvectomy was performed after neoadjuvant radiotherapy. The patient later developed local recurrence with invasion of the anal sphincter, creating a delicate problem regarding a surgical approach. The size and the extent of the recurrent tumor required a complex surgical intervention using a mixed surgical team of general surgeons and plastic surgeons. Surgical intervention with a large excision of the recurrent cancer along with amputation of the inferior rectum via perineal route, and creation of a left iliac anus was performed. The perineal defect was covered via a musculocutaneous flap using the gracilis muscle. The immediate post-operative evolution was favorable

    Gravimetric and biological sensors based on SAW and FBAR technologies

    Get PDF
    This presentation will describe the development of Gravimetric and Biological Sensors based on SAW and FBAR Technologies. The SAW devices were fabricated on polycrystalline ZnO thin films deposited using both standard R.F. sputtering techniques and a novel High Target Utilisation Sputtering System (HiTUS). This system ensures that we can produce the low stress films at the high deposition rates necessary for such structures to operate efficiently. However in order to further improve the sensitivity of our sensors we have also investigated the use of Thin Film Bulk Acoustic Resonators (FBARs) . We will describe standard gravimetric sensors based on such material and also gravimetric sensors for use in liquid environments through the use of inclined c-axis ZnO material. The talk will conclude with a discussion of dual mode thin film FBARs for parallel sensing of both mass loading and temperature

    Present Status and Future Programs of the n_TOF Experiment

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented

    Measurement of 73 Ge(n,γ) cross sections and implications for stellar nucleosynthesis

    Get PDF
    © 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe

    Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility

    Get PDF
    ©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio

    Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN

    Get PDF
    The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.Peer reviewedFinal Accepted Versio

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe

    The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region

    Get PDF
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)
    corecore