3,284 research outputs found

    Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC operations

    Get PDF
    The conceptual design for a Level-1 muon track-finder trigger for the CMS endcap muon system is proposed that can accommodate the increased particle occupancy and system constraints of the proposed SLHC accelerator upgrade and the CMS detector upgrades. A brief review of the architecture of the current track-finder for LHC trigger operation is given, with potential bottlenecks indicated for SLHC operation. The upgraded track-finding processors described here would receive as many as two track segments detected from every cathode strip chamber comprising the endcap muon system, up to a total of 18 per 60° azimuthal sector. This would dramatically improve the efficiency of the track reconstruction in a high occupancy environment over the current design. However, such an improvement would require significantly higher bandwidth and logic resources. We propose to use the fastest available serial links, running asynchronously to the machine clock to use their full bandwidth. The work of creating a firmware model for the upgraded Sector Processor is in progress; details of its implementation will be discussed. Another enhancement critical for the overall Level-1 trigger capability for physics studies in phase 2 of the SLHC is to include the inner silicon tracking systems into the design of the Level-1 trigger

    B Physics at the Tevatron: Run II and Beyond

    Full text link
    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.Comment: 583 pages. Further information on the workshops, including transparencies, can be found at the workshop's homepage: http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter http://www-theory.lbl.gov/Brun2/report

    Measurement of WγW\gamma and ZγZ\gamma Production in ppˉp\bar{p} Collisions at s\sqrt{s} = 1.96 TeV

    Get PDF
    The Standard Model predictions for WγW\gamma and ZγZ\gamma production are tested using an integrated luminosity of 200 pb1^{-1} of \ppbar collision data collected at the Collider Detector at Fermilab. The cross sections are measured selecting leptonic decays of the WW and ZZ bosons, and photons with transverse energy ET>7E_T>7 GeV that are well separated from leptons. The production cross sections and kinematic distributions for the WγW\gamma and ZγZ\gamma are compared to SM predictions.Comment: 7 pages, 4 figures, submitted to PR

    Measurement of the Lifetime Difference Between B_s Mass Eigenstates

    Get PDF
    We present measurements of the lifetimes and polarization amplitudes for B_s --> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B_s system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07 +{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s and average Gamma_s, of the decay rates of the two eigenstates, the results are DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47 +{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters on 16 March 2005; revisions are for length and typesetting only, no changes in results or conclusion

    A search for resonant production of ttˉt\bar{t} pairs in $4.8\ \rm{fb}^{-1}ofintegratedluminosityof of integrated luminosity of p\bar{p}collisionsat collisions at \sqrt{s}=1.96\ \rm{TeV}$

    Get PDF
    We search for resonant production of tt pairs in 4.8 fb^{-1} integrated luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the ttbar candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant ttbar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of ttbar pairs. A benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} < 900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201

    Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson

    Get PDF
    We report first evidence for a fully reconstructed decay mode of the B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability of a peak of this magnitude occurring by random fluctuation in the search region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR

    Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    Get PDF
    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS

    Top quark mass measurement using the template method at CDF

    Get PDF
    We present a measurement of the top quark mass in the lepton+jets and dilepton channels of ttˉt\bar{t} decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb1^{-1} of ppˉp\bar{p} collisions at Tevatron with s=1.96\sqrt{s}=1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the WW decay in the lepton+jets channel, and a reconstructed top quark mass and mT2m_{T2}, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop=172.1±1.1(stat)±0.9(syst).M_{top} = 172.1 \pm 1.1(stat) \pm 0.9(syst).Comment: submitted to Phys. Rev.

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848
    corecore