3,284 research outputs found
Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC operations
The conceptual design for a Level-1 muon track-finder trigger for the CMS endcap muon system is proposed that can accommodate the increased particle occupancy and system constraints of the proposed SLHC accelerator upgrade and the CMS detector upgrades. A brief review of the architecture of the current track-finder for LHC trigger operation is given, with potential bottlenecks indicated for SLHC operation. The upgraded track-finding processors described here would receive as many as two track segments detected from every cathode strip chamber comprising the endcap muon system, up to a total of 18 per 60° azimuthal sector. This would dramatically improve the efficiency of the track reconstruction in a high occupancy environment over the current design. However, such an improvement would require significantly higher bandwidth and logic resources. We propose to use the fastest available serial links, running asynchronously to the machine clock to use their full bandwidth. The work of creating a firmware model for the upgraded Sector Processor is in progress; details of its implementation will be discussed. Another enhancement critical for the overall Level-1 trigger capability for physics studies in phase 2 of the SLHC is to include the inner silicon tracking systems into the design of the Level-1 trigger
B Physics at the Tevatron: Run II and Beyond
This report provides a comprehensive overview of the prospects for B physics
at the Tevatron. The work was carried out during a series of workshops starting
in September 1999. There were four working groups: 1) CP Violation, 2) Rare and
Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and
Spectroscopy. The report also includes introductory chapters on theoretical and
experimental tools emphasizing aspects of B physics specific to hadron
colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a
Summary.Comment: 583 pages. Further information on the workshops, including
transparencies, can be found at the workshop's homepage:
http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up
http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter
http://www-theory.lbl.gov/Brun2/report
Measurement of and Production in Collisions at = 1.96 TeV
The Standard Model predictions for and production are
tested using an integrated luminosity of 200 pb of \ppbar collision data
collected at the Collider Detector at Fermilab. The cross sections are measured
selecting leptonic decays of the and bosons, and photons with
transverse energy GeV that are well separated from leptons. The
production cross sections and kinematic distributions for the and
are compared to SM predictions.Comment: 7 pages, 4 figures, submitted to PR
Measurement of the Lifetime Difference Between B_s Mass Eigenstates
We present measurements of the lifetimes and polarization amplitudes for B_s
--> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and
light (L) mass eigenstates in the B_s system are separately measured for the
first time by determining the relative contributions of amplitudes with
definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we
obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07
+{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s
and average Gamma_s, of the decay rates of the two eigenstates, the results are
DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47
+{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters
on 16 March 2005; revisions are for length and typesetting only, no changes
in results or conclusion
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
Evidence for the exclusive decay Bc+- to J/psi pi+- and measurement of the mass of the Bc meson
We report first evidence for a fully reconstructed decay mode of the
B_c^{\pm} meson in the channel B_c^{\pm} \to J/psi \pi^{\pm}, with J/psi \to
mu^+mu^-. The analysis is based on an integrated luminosity of 360 pb$^{-1} in
p\bar{p} collisions at 1.96 TeV center of mass energy collected by the Collider
Detector at Fermilab. We observe 14.6 \pm 4.6 signal events with a background
of 7.1 \pm 0.9 events, and a fit to the J/psi pi^{\pm} mass spectrum yields a
B_c^{\pm} mass of 6285.7 \pm 5.3(stat) \pm 1.2(syst) MeV/c^2. The probability
of a peak of this magnitude occurring by random fluctuation in the search
region is estimated as 0.012%.Comment: 7 pages, 3 figures. Version 3, accepted by PR
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS
Top quark mass measurement using the template method at CDF
We present a measurement of the top quark mass in the lepton+jets and
dilepton channels of decays using the template method. The data
sample corresponds to an integrated luminosity of 5.6 fb of
collisions at Tevatron with TeV, collected with the CDF II
detector. The measurement is performed by constructing templates of three
kinematic variables in the lepton+jets and two kinematic variables in the
dilepton channel. The variables are two reconstructed top quark masses from
different jets-to-quarks combinations and the invariant mass of two jets from
the decay in the lepton+jets channel, and a reconstructed top quark mass
and , a variable related to the transverse mass in events with two
missing particles, in the dilepton channel. The simultaneous fit of the
templates from signal and background events in the lepton+jets and dilepton
channels to the data yields a measured top quark mass of Comment: submitted to Phys. Rev.
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the
construction and characterisation of Micro Pattern Gaseous Detector (MPGD),
with particular attention to the realisation of the largest triple (Gas
electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the
CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of
about 0.5 m2 active area each, employing three GEM foils per chamber, to be
installed in the forward region of the CMS endcap during the long shutdown of
LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM
foils that are mechanically stretched in order to secure their flatness and the
consequent uniform performance of the GE1/1 chamber across its whole active
surface. So far FBGs have been used in high energy physics mainly as high
precision positioning and re-positioning sensors and as low cost, easy to
mount, low space consuming temperature sensors. FBGs are also commonly used for
very precise strain measurements in material studies. In this work we present a
novel use of FBGs as flatness and mechanical tensioning sensors applied to the
wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used
to determine the optimal mechanical tension applied and to characterise the
mechanical tension that should be applied to the foils. We discuss the results
of the test done on a full-sized GE1/1 final prototype, the studies done to
fully characterise the GEM material, how this information was used to define a
standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste,
Italy). arXiv admin note: text overlap with arXiv:1512.0848
- …