124 research outputs found
Hierarchal object-oriented models for management of narrow passageways
Narrow passageways are a significant source of traffic congestion and delay in transportation networks. With traffic volumes expected to increase significantly in the foreseeable future, the effective management of these passageways is needed to mitigate the undesirable impact of these bottlenecks on transportation system safety, performance and cost. In an effort to address the significant challenges associated with the analysis, design, and implementation of appropriate management operations for narrow passageways, an object-based model for the management of narrow passageways in the transportation network is developed. The object model is developed in two steps. The first step identifies high-level management functionality, objects, and associated data/information sources that are common to all narrow passageway applications. In the second step, functionality of the object model is customized to the specific needs of the narrow passageway application domain (e.g., waterways and work zones).peer-reviewe
Genetic and morphological diversity of the genus penicillium from mazandaran and tehran provinces, Iran
Background: The genus Penicillium contains a large number of ubiquitous environmental taxa, of which some species are clinically important. Identification of Penicillium down to the species level is currently based on polyphasic criteria, including phenotypic features and genetic markers. Biodiversity of the genus Penicillium from Mazandaran and Tehran provinces has not been described. Objectives: The current paper focused on the environmental biodiversity of Penicillium isolates within some areas of Mazandaran and Tehran provinces, based on morphological traits and the molecular data from partial sequence of the β-tubulin (BT2) gene. Materials and Methods: A total of 400 strains were isolated from the environment and investigated using morphological tests and sequencing of BT2, in order to characterize the spectrum of the Penicillium species. Results: Sequence analysis of BT2 and morphological criteria of 20 strains representative of 10 species showed that Penicillium chrysogenum was the most prevalent species (n = 6), followed by P. polonicum (n = 3), P. glabrum (n = 2), P. palitans (n = 2), P. melanoconidium (n = 2), and other species, including P. expansum, P. canescense, P. griseofulvum, P. italicum, and P. raistrickii with one case each. Conclusions: It was shown that partial β-tubulin sequence, as a reliable genetic target, supported specific morphological criteria for identification of the Penicillium species. Like other assessments throughout the world, P. chrysogenum remains the most frequent environmental Penicillium species in Mazandaran and Tehran Provinces. © 2016 Ahvaz Jundishapur University of Medical Sciences
Effect of the exercise programme on the quality of life of prostate cancer survivors: A randomized controlled trial
publishedVersionUnit License Agreemen
Dense pedestrian crowds versus granular packings: An analogy of sorts
Analogies between the dynamics of pedestrian crowds and granular media have
long been hinted at.They seem all the more promising as the crowd is (very)
dense, in which case the mechanical constraints prohibiting overlapsmight
prevail over the decisional component of pedestrian dynamics. These analogies
and their origins are probed in two distinct settings, (i) a flow through a
narrow bottleneck and (ii) crossing of a static assembly by an intruder.
Several quantitative similarities have been reported for the former setting and
are discussed here, while setting (ii) reveals discrepancies in the response
pattern, which areascribed to the pedestrians' ability to perceive, anticipate
and self-propel
q-Form fields on p-branes
In this paper, we give one general method for localizing any form (q-form)
field on p-branes with one extra dimension, and apply it to some typical
p-brane models. It is found that, for the thin and thick Minkowski branes with
an infinite extra dimension, the zero mode of the q-form fields with q<(p-1)/2
can be localized on the branes. For the thick Minkowski p-branes with one
finite extra dimension, the localizable q-form fields are those with q<p/2, and
there are also some massive bound Kaluza-Klein modes for these q-form fields on
the branes. For the same q-form field, the number of the bound Kaluza-Klein
modes (but except the scalar field (q=0)) increases with the dimension of the
p-branes. Moreover, on the same p-brane, the q-form fields with higher q have
less number of massive bound KK modes. While for a family of pure geometrical
thick p-branes with a compact extra dimension, the q-form fields with q<p/2
always have a localized zero mode. For a special pure geometrical thick
p-brane, there also exist some massive bound KK modes of the q-form fields with
q<p/2, whose number increases with the dimension of the p-brane.Comment: 14 pages, 2 figures, published versio
Design and deployment of semiochemical traps for capturing 1 Anthonomus rubi Herbst (Coleoptera: Curculionidae) and Lygus rugulipennis Poppius (Hetereoptera: Miridae) in soft fruit crops
Strawberry blossom weevil (SBW), Anthonomus rubi Herbst (Coleoptera: Curculionidae) and European tarnished plant bug (ETB), Lygus rugulipennis Poppius (Hetereoptera: Miridae), cause significant damage to strawberry and raspberry crops. Using the SBW aggregation pheromone and ETB sex pheromone we optimized and tested a single trap for both species. A series of field experiments in crops and semi-natural habitats in five European countries tested capture of the target pests and the ability to avoid captures of beneficial arthropods. A Unitrap containing a trapping agent of water and detergent and with a cross vane was more efficient at capturing both species compared to traps which incorporated glue as a trapping agent. Adding a green cross vane deterred attraction of non-pest species such as bees, but did not compromise catches of the target pests. The trap caught higher numbers of ETB and SBW if deployed at ground level and although a cross vane was not important for catches of ETB it was needed for significant captures of SBW. The potential for mass trapping SBW and ETB simultaneously in soft fruit crops is discussed including potential improvements to make this more effective and economic to deploy
A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy
A real-world newspaper distribution problem with recycling policy is tackled in this work. In order to meet all the complex restrictions contained in such a problem, it has been modeled as a rich vehicle routing problem, which can be more specifically considered as an asymmetric and clustered vehicle routing problem with simultaneous pickup and deliveries, variable costs and forbidden paths (AC-VRP-SPDVCFP). This is the first study of such a problem in the literature. For this reason, a benchmark composed by 15 instances has been also proposed. In the design of this benchmark, real geographical positions have been used, located in the province of Bizkaia, Spain. For the proper treatment of this AC-VRP-SPDVCFP, a discrete firefly algorithm (DFA) has been developed. This application is the first application of the firefly algorithm to any rich vehicle routing problem. To prove that the proposed DFA is a promising technique, its performance has been compared with two other well-known techniques: an evolutionary algorithm and an evolutionary simulated annealing. Our results have shown that the DFA has outperformed these two classic meta-heuristics
Parallel functional testing identifies enhancers active in early postnatal mouse brain
Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain
Recommended from our members
Universal DNA methylation age across mammalian tissues.
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals
Universal DNA methylation age across mammalian tissues
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.Publisher PDFPeer reviewe
- …